SRL — A Simple Retargetable L oader*

David Ung

Cristina Cifuentes

Centre for Software Maintenance
School of Information Technology
University of Queensand
{davidu,cristina} @it.uq.edu.au

Abstract

A loader is a systems program used by an operating
system (OS) to load a binary executabl e file onto memory to
execute it. Theinternal format of a binary executablefileis
called thebinary-fileformat (BFF); thisformat isdependent
on the OSand the particular computer architecture it runs
on.

Traditionally, when developing machine-code manipu-
lation tools such as binary trandators and disassemblers,
devel opers need to write a decoder for each type of binary
executabl e file they want to manipulate, i.e. for n different
binary executables, they need to write ». different loaders.
Wth the advent of binary trandation technology and the
increased number of machines and operating systems, a re-
targetable loader (RL) would eliminate the effort required
in creating different loaders; if only one such environment
existed.

RL, a simple retargetable loader, is a first attempt at
developing an RL framework by means of a simple BFF
grammar. Three different environments, (x86,DOSEXE),
(x86,Windows,NE) and (Sparc,Solaris,ELF), were used as
the basis for the devel opment and testing of SRL. The three
environments give a good coverage of different BFFs cur-
rently in use by OSs for RISC and CISC machines.

1. Introduction

M achine-code manipulation tools such as binary trans-
lators, disassemblers, decompilers, binary debuggers, and
tracers or profilers, are systems programming toolsthat in-
teract with the computer’s operating system (OS) to either
trandate low-level machine instructionsinto a higher level
of abstraction (e.g. inthe case of disassemblers, decompil-
ers and debuggers), or to another low-level of abstraction

*This work is partially supported by Sun Microsystems Laboratories
and the Australian Research Council under grant No. A49702762.

(e.g. inthe case of binary trandators). The first step in
devel oping any machine-code manipulationtool isto under-
stand the source binary-file format (BFF) of the executable
program'; i.e. the type of information it stores, how it is
stored, and how it can be accessed or retrieved. Users of
computer programs are normally not concerned with any of
these issues since the OS automatically handles theloading
of the program into memory.

When a program is to be executed in memory, the OS
first extracts all necessary information from the executable
file's header and carries out any necessary actions (e.g. re-
location) before putting it into memory. In other words, the
OS decodes the executabl e file into an understandabl e rep-
resentation in memory and passes control to the program for
itsexecution. This processis often described as theloading
of aprogram.

The general object code decoding abstraction for the pur-
poses of creating machine-code manipulationtoolsisshown
in Figure 1, where we describe the environment of a binary
executable by means of atriplet (M,0SBFF). M denotes a
machine or computer architecture, OS denotesthe operating
system used by that machine, and BFF denotes the binary-
file format used by that operating system. In Figure 1, a
source object file (M1,0S1,BFF1) isfed into aloader which
decodes file-rel ated information. The program’stext isthen
decoded based on M1's machine instruction set onto an in-
termediate representation that is suitable for the particular
machine-code manipulation tool. For example, a binary
trang ator will need to trandate the intermediate representa-
tion onto another target object code program for a different
environment (M2,0S2,BFF2); a disassembler will need to
produce an assembly code program; and a decompiler will
need to produce a high-level language program. Each of
these tools will require a different level of abstraction in
their intermediate representation.

1Different names are used in the literature to refer to executable pro-
grams. binary programs, object code, binary executables, or executable
programs. All of these names are used as synonymsin this paper, and refer
to the end product of the compilation and linkage process.

Source object

oy, O3, BFF)

Loader
Decoding machine
mstructions

Faa » ¥ Ta Trea

Target object Aggembler Aggembler High Level Modified source
M, O35, BFF) prograrm information Language oy, O3, BFF)
Binary Translator Disassembler Debugger Decompiler Tracer { Profiler

Figure 1. Object code decoding abstraction

Binary trandators are of particular importance in this
study as they interact with BFFs twice; once during the de-
coding of the source eecutable program, and once during
the encoding of the new target executable program. Exist-
ing binary trand ators such as Digital’s VEST and mx [13],
Freeport Express[5] and FX!32[15]; Sun’sWabi [14]; Ap-
ple€ sSMAE[4] and AT& T's Flashport [1] support oneor two
different platforms only. We are developing a retargetable
binary trandation framework that supports a larger set of
platforms.

1.1. Retargetable loading

Traditionally, when devel oping a machine-code manipu-
lationtool, devel opers need to write adecoder for every BFF
they want to manipulate. For example, if we want to write
a disassembler for an Intel x86 machine running DOS and
using the EXE binary file format [6, 12], we write aloader
for the EXE format and a decoder of machine instructions
for (x86,DOS). If we then decide to write another disassem-
bler for the Windows New Executable (NE) BFF[6, 12], we
need to write another loader for NE and amodified machine
instruction decoder for (x86,Windows) as the interface to
information on the BFF is different. So, if we have n dif-
ferent (M,OS,BFF) tuples, we will need to write n different
loaders.

A systems programmer devel oping a machine-code ma:
ni pul ation tool and wantingtotest thenew tool on A different
machine architectures, using B different operating systems
and C different BFFs, will need to write AXBxC different
loaders. However, the process carried out by al loadersis
similar despite the fact that the (M,0S,BFF) tuples are dif-
ferent. |dedlly, developers would like to write as minimum
code as possiblein order to cater for different (M,0OS,BFF)
tuples. This approach is possible with the devel opment of
reusable components that are automatically generated from
specifications; i.e. aretargetable loader (RL) framework.

The input to the RL framework is a BFF specification
and abinary executable. The BFF specification isan unam-
biguous description of a binary-file format. The output of
the RL isahigh-level language interface for the loading of
the program.

The rest of this paper is structured in the following way.
Section 2 discusses previousworksrelated to the design of a
retargetable loader. Section 3 describes the devel opment of
an RL using specifications; structure of binary-file formats
(BFFs) are discussed in Section 4. The BFF properties and
the grammar used by the Simple Retargetable Loader (SRL)
arethe main topic of Section 5. Section 6 describes how we
tested the SRL and the results accomplished. A summary
and conclusion follow the paper.

2. Previous wor k

A few methods and tools are currently available for cap-
turing binary information stored in executable programs.
Overall, there are 3 different approaches that can be used in
developing aloader (or any other system tool) [16]:

1. hand-craft the code,

2. uselibrary routinesto assist in the writing of the code,
or

3. use specificationsfor automatic generation of the code.

The first approach is the easiest and quickest to imple-
ment, athough sometimes tedious to test. This simplicity
advantage is only good for creating loaders that are lim-
ited to the knowledge of one BFF. As described earlier, one
would need to hand craft » different loaders for n differ-
ent (M,0S,BFF) system tuples, and hence this approach is
unsuitablefor retargetability purposes.

Approaches2 and 3 can betime-consuming to implement
at first (i.e. developing the library or the generator of code
based on specifications), however, once thistimeinvestment
has been made, the production of other loadersis quick and
simple. Anoverhead in learningthetool a hand will dways
be needed though. Either approach provides support for the
creation of an RL framework. A widely used example of the
second approach is provided by the Binary-File Descriptor
(BFD) library [2], which uses an extensive structure to rep-
resent detailswithin abinary file; routinesfor new BFFsare
added to thelibrary incrementally. An example of the third
approach was attempted in the DWG (AutoCAD) work [7],
which uses a specification language to describe the contents
of thefile. Both these methods are reviewed in the coming
subsections.

With therecent trend towards Javaand portabl e software,
the use of machine-independent representationsto store the
final "executable" program is bound to grow. Java "exe-
cutabl€e" programs are binary representations of bytecodes

for an abstract stack machine. Thismachineisimplemented
by the Java Virtua Machine (VM) [11]. Java "executa-
bles" also contain other information required by the VM for
execution of the program.

The creation of alibrary interface for |oading such byte-
code programs, or the specification of such binary format,
are possible. However, the loading of the program as such
will be governed by rulesin the VM rather than traditiona
Von Neumann machine rules (i.e. execute machine instruc-
tions sequentially from the given entry point, following the
flow of control of the program). Inthework reported inthis
paper, we have concentrated on thetraditional, in use, CISC
and RISC machines.

2.1. Binary-file descriptor library

GNU'’s Binary-File Descriptor (BFD) Library [2] is a
package containing common routines that applications can
use regardless of their underlying binary-file format. The
BFD library divides each specified BFF into the front-end
and the back-end. Thefront-end interfaces between the user
and the BFD, while the back-end provides a set of cals
which the BFD front-end can use to decode and manage the
object file. To support anew BFF, the programmer needs to
create anew BFD back-end and add it to the library.

BFD has its own binary representation for interna pro-
cessing known as the canonical object file format. When
an object file (M,0OSBFF) is opened, the front-end BFD
routines automatically determine the format of the input
object-file. A descriptor is built in memory with informa-
tion about which routines are to be used to access elements
of the object file's data structure. When the program wants
information about the object files, the BFD reads from dif-
ferent sections of the file and processes them. Each BFD
back-end will have routines to convert section representa
tionsof the object fileto BFD’sinternal canonical object-file
format.

The BFD library isagood example of using library rou-
tines to develop an RL. Unfortunately, the library itself is
very large; the number of functions offered in the front-end
are exceptionally many. The BFD front-end was designed
in mind to alow programmersto be abletoretrieveall types
of information about any BFF; at least the existing ones at
thetime. Duetoitsgenerality and bulkiness, itisdifficult to
use without spending a big overhead on learning how to use
it. Perhaps because it istoo general, it often contain more
information than is needed for system applications.

2.2. DWG-based grammar

Aninitial attempt at devel opingaBFF grammar wasdone
by Faase using the AutoCAD’s DWG format [7]. In this
grammar, terminal symbols consist of a number of bytes

and are the fundamental set of base types found in most
programming languages: char, int, long, float and double.
A binary object file is viewed as a stream of bytes. The
grammar supports different byte ordering for integers, and
different formatsfor floating point numbers for various ma
chines. For example, thedefinition of aword representation
in alittle-endian machine is given by:

type word : =
byte : first,
byte : second

return ((word)first | ((word)second << 8).

In alittle-endian machine, the lower order byteis stored
before the higher order byte. New types are defined as a
series of bytesfollowing thisrule;

type_def _rule :=
"typedef" data_type basic_type_nane ":="
("byte" ":" byte_nane) LIST
"return" expr "."

AutoCAD’s file format contains a header, severa sec-
tions and blocks of information related to 2D or 3D draw-
ings. This generd file structure resembles that of a simple
BFF. However, theinformation stored in the sectionsisvery
different as binary executables contain relocation informa-
tion, symbol table information, dynamic linking informa-
tion, and more. Also, since the DWG format is used as the
basis for development, the resulting grammar is biased to-
wards DWG. A compl ete specification for the DWG format
can befound in[7].

3. Developing aretargetable loader via specifi-
cations

The use of specificationsin the devel opment of software
engineering toolsis not new. Parser and compiler genera
tor tools based on specifications, such as lex [10], yacc [9]
and Eli [8], have been around for a while and have proven
to be very useful. The input to these generator tools is
often a specification, usualy in the form of a context free
grammar commonly found in specifying the syntax of pro-
gramming languages. This concept can aso be applied to
binary objects where each of the BFFs can be specified in
agrammar that can be understood by the RL. The resulting
object file specification needs to contain information about
the structure of the object file and how various sections can
be accessed. Each specification acts as a framework for al
object files in the group, i.e. atemplate for al objects be-
longing to the environment (M,OS,BFF). In programming
language terms, the BFF template resembles the variable
types while each of the object files is an instance of this

type.

Object fle specify
M, 05, BFE) ¥ o, 03, BFFy)

|

Retargetable
Loader

|

Figure 2. Developing an RL via specification

Figure 2 describes the RL approach; an object file
(M1,0S1,BFF1) has a specification template according to
thesyntax of the BFF grammar. A retargetableloader would
use the template information as the basis for processing the
object file (M1,051,BFF1).

4. Binary-fileformats

The genera structure of a BFF can be seen to be made
up by the following abstraction:

o A header containing general information about the pro-
gram and information needed to access various parts of
thefile.

o A number of sectionsholding code and data (raw data).
o Relocation table(s).
o Symbol table information.

Most BFFs can be mapped to the general model in Fig-
ure 3. Information regarding the location of sections, sym-
bol tables, etc are usually identified within the file header.
Nevertheless, some BFFs do not distinguish between these
structures; in the DOS EXE format, the file header contains
information about the relocation table, but there is no in-
formation about where the symbol table is stored (if any),
and wheredatais; thereisonly one section that embodies all
code, dataand symbol tableinformation. Inall casesthough,
the program’ sheader will contain enough informationto de-
terminethe entry point (i.e. the start of the program’s code)
inthefile.

The current devel opment domain for our tool sisbased on
the DOS EXE format [6, 12] Windows (16-bit) NE [6, 12]
and Solaris ELF [14] BFF formats. These formatsvary in
their degree of complexity and information stored: the DOS
EXE is very simple and limited in structure, whereas the
Solaris ELF format is the most complex, while the Win-
dows NE is somewhere in between. For example, for a
simple “Hello world” program, using a DOS EXE file will
contain a file header, relocation table and a single image
for both code and data. The Windows NE version wil

BEF Template for ‘" EBFF T

File header
Eelocation Table
Symbol Table
Section 1
Section 2

Sectionn

Figure 3. BFF abstraction

contain most DOS EXE information plus additiona de-
tails such as the resource table, entry table, etc. The ELF
format contains even more information about the file; sec-
tions within the object file hold information used in dy-
namic linking: code, data, relocation tables, symbol ta
bles, dynamic linking information, etc. Typica “Hello
world” binaries for (x86,DOS,EXE), (x86,Windows,NE)
and (Sparc,Solaris,ELF) are 6432, 16384 and 5280 bytes
long respetively. It can clearly be seen that although the
latter two files are dynamically linked, their sizes are not
necessarily smaller than the static (first) case. Thisisdueto
the small nature of the example program and the inclusion
of the DOS EXE header information within the NE format.

5. BFF grammar

In this section we describe the BFF grammar devel oped
based onthe EXE, NE and EL F formats. Westart by describ-
ing someof the propertiesof BFFs, followed by adescription
of the grammar itself.

5.1. BFF properties

Inabinary file, some partswithinthefile areinterrel ated.
Although the structure of the binary file does not change
a run-time, it'sfile size, location of sections (or regions)
and contents can vary significantly, sometimes having in-
formation at the end of the file refering to sections in the
middle of thefile. Because of this behaviour, the ability of
the grammar to reference previoudy defined informationis
very important. The resulting grammar not only needs to
be generd, it must also be flexible to assist the final RL in
re-referencing previously parsed information. Information
that needs to be re-referenced is usudly found in the file
header of the binary object file. As the specification for a
particular BFF is parsed, any reference to previously read
information needs to be handled appropriately.

Theability for aprogramming languageto re-use defined
information later in the program can be quite restricted.
Although user defined types can be referenced later when

declaring instances, they do not have a value. Macros in
languages can be used (referenced) throughout the rest of
the program after itsdefinition, but their values are fixed and
cannot be changed. In contrast, each binary file of a given
BFF hasitsown set of recordsthat identifiesitself. The BFF
specification captures the structure of these records, but not
itsinformation. The genera structure of the BFF is known
through the specification, however each instance of thisBFF
can only be understood by an RL during its parsing process
at run-time. The specification defines the items in the file,
but their run-time values give meaning to other definitions
inthe rest of the specification.

The following example will clarify the idea of re-
referencing in a BFF specification: let us assume we have
a “Helo World” program stored in a Windows NE BFF.
The segment table for the Windows NE BFF consists of a
fixed number of segment table entries. The exact number
of entriesis listed as one of the fields in the program’sfile
header—NumSegEnt. To create a copy of the segment table
for the“HelloWorld” programin memory, the RL must allo-
cate the number of entries according to NumSegEnt. In the
Windows NE specification, the definition of the file header
and segment table could be as follows:

Fi | eHeader : STRUCTURE {

NunBegEnt : int;

}

Segnent Tabl e : ARRAY NunSegEnt OF SegTabl eEnt;

Inother words, theval ue of NumSegEnt i sused to specify
thesizeof thearray SegmentTable. In traditiona languages,
the array size needs to be specified a compile time. How-
ever, in thislanguage, the size of the segment table isonly
known at run-time, hence the array is alocated a run-time
when the information becomes available. This behaviour
iswhat we refer to as re-referencing of information. Most
re-referenced information is located in the file header, but
sometimes thisis not the case. For example, to locate the
segment table, the address where it can be located must be
defined:

Segnent Tabl e : ARRAY NunSegEnt OF SegTabl eEnt;

ADDRESS Newtof f + SegTof f;

The address is the addition of SegTof f , found within
thesecond header, and NewHof f , located inthefirst header.

5.2. BFF grammar for simpleretargetable loader

SRL, asimple retargetable | oader, was constructed to de-
velop atool that would support the devel oped BFF grammar,
and generate C code for the loading of a binary file stored
in the specified binary-file format. SRL requires a generic
BFF grammar such that it can be easily extended if later

found insufficient to describe other BFFs. Our focus has
been mainly on three BFFs. DOS EXE, Windows (16 bit)
NE and Solaris ELF formats. The difference in complexity
between these BFF (DOS EXE-simple, Solaris ELF—very
general and Windows NE-moderate) gives an indication of
how well the grammar works. We present the abstract syn-
tax of BFFG, SRL's BFF grammar. The grammar syntax is
in extended BNF (EBNF) format. EBNF has the following
language symbols:

e Sequencesaredenoted by {}. E.g. {rep} specifieszero
or more repetitions of rep.

e Optiona isdenoted by []. E.g. [opt] specifies zero or
one occurrences of opt.

e Selectionisdenoted by |. Eg. A | B | C specifies a
choice between A, B and C.

In the grammar, non-terminals appear in italics, termi-
nals appear in normal fontface, “literal strings’ appear with
double quotes, and exanpl es appear in courier. The start
symbol for this grammar is BFFspec:

BFFspec => {spec}.

spec => format-def defin {defin} load-info

format-def => “DEFINITION” “FORMAT"
ident {ident} “END” “FORMAT"”

defin => “DEFINITION" ident
“ADDRESS’ expression scope-def
“END” ident.

load-info => “FILEHEADER" ident
“IMAGESIZE" expression
“IMAGEADDRESS’ expression

scope-def => ident type-exp {ident type-exp}

type-exp => “SIZE" expression|

“ARRAY" expression scope-def
“END” ident

“(" ident operator expression*“)”
| ident operator expression| e

expression =>

Operator = wyn | “w_n | W | u/-n | “ry | u%-n
Ident = “qlez | L NA {u a7 |
A | won }

Hence, the body for any BFF specification isof theform:
spec =>> format-def defin {defin} load-info

5.2.1 format-def

format-def => “DEFINITION” “FORMAT"
ident {ident} “END” “* FORMAT"

The format-def non-terminal specifies the overall struc-
ture of the BFF. All ident names used for sectiong/divisions
of the binary file defined as part of format-def must be de-
fined later in the specification athough the format need not
includeal partsof aBFF; i.e. some entries can act as space
fillers that separate different parts of the file. An example

definition of format-def for asimple BFF format is:

DEFI NI TI ON FORVAT
file_header
section

END FORVAT

In this example, fil e_header and secti on will
need to be defined later on in the grammar. If we want to
specify the DOS EXE file, then the rel ocation table would
go between thef i | e_header and secti on. However,
if we are not concerned with its details, it can be omitted
from the definition. The organisation of identifiersis not
forced; it merely indicatestherelative ordering of divisions.
The above definition does not suggest that sect i on starts
attheend of fi | e_header; infact, secti on could be
placed before f i | e_header. The syntax of format-def
does not place any ordering restrictionsonit. But for clarity
and ease of understanding, the user should arrange the defi-
nitionsin awell-formed manner so that it reflects the actual
file's structure.

522 defin

Each declared identifier ident in aformat-def isdefined using
the following defin rule:
defin => “DEFINITION” ident

“ADDRESS’ expression

scope-def

“END” ident

Defin declares a new structure (section or block of the

file). Theident that followsthekeyword DEFINITION must
be previously declared inthe grammar. The start location of
thisnew structure (relativeto the start of thefile) isspecified
by the expression &fter the keyword ADDRESS; eg. the
definition of thef i | e_header might look likethis:

DEFI NI TION fil e_header ADDRESS 0
h_siglLo SIZE 8
h_sigH SIZE 8
h_| ast PageSi ze SI ZE 16

ENb. file_header

The above definition indicates that the fi | e_header
starts at the beginning of thefile (i.e. offset 0). All declara-
tionsthat follow the ADDRESS belong to thisdefinition; in
theabove casethef i | e_header . Theentriesh_si gLo,
h_si gH and h_| ast PageSi ze al belong to the same
scope level and have aparent named f i | e_header . This
concept is equivalent to the definition of astructura typein
most programming languages.

5.2.3 Loading-info

“FILEHEADER" ident
“IMAGESIZE" expression
“IMAGEADDRESS’ expression

load-info =>

Load-info holds the fundamenta information about the
object file for loading to occur. It is crucia for any BFF
specification to provide its loading information. There is
no order on the occurrence of the three constructs, as long
as al three exist in the specification. The FILEHEADER
construct identifiesthefirst region of the object that must be
loaded into memory. Thisregion is often the file header as
it contain critical information about the locations of other
regions and some house keeping information. The IMAGE-
SIZE specifies the load image size; the size is often calcu-
lated based on the information obtained in the file header.
The IMAGEADDRESS specifies the start address (relative
to the beginning of the file) where the image is stored.

5.2.4 scope-def

scope-def => ident type-exp {ident type-exp}

Scope-def captures al information belonging to the same
scopelevel withinonestructure. Itspropertiesare ana ogous
to the structural typesin thelanguage C. Anident name and
type information defines each field within the scope.

525 typeexp

typeexp => “SIZE" expression|
“ARRAY” expression scope-def
“END” ident

Type-exp defines the type for the identifier ident in bits.
An identifier can be either a single element of a particular
size or a group that is specified by the ARRAY construct.
The expression after the keyword ARRAY identifies the
number of elementsinthe ARRAY. Declarationswithin the
ARRAY definition arebounded to thesamescope, witharray
identifier being their parent. For example, the definition of
the segment table in the Windows NE format follows:

DEFI NI TI ON seg_t abl e ADDRESS (sh_segToff + sho_off)
seg_tabl e_ent ARRAY sh_segTent
ste_l ogSectof f SIZE 16
ste_size SIZE 16
ste_flag Sl ZE 16
ste_minsize Sl ZE 16
END seg_t abl e_ent
END seg_table

In the Windows NE format, the segment table is defined
to bean array of structuresnamed seg_t abl e_ent . The
number of array elements is sh_segTent , which must
have been parsed earlier in the specification and its value
is used at run-time. ste | ogSectoff, ste_size,
ste flag and ste_mi nsi ze are the components (or
fields) of oneelement of seg_t abl e_ent.

6. Experimentation

SRL, the Simple Retargetable Loader, is an attempt to
demonstrate the benefit of using an RL to build a machine-
code manipulationtool. It isascaled downed version of an
RL and isimplemented in C. The SRL islimitedin away by
its simple grammar which contains a small number of con-
structs. As described in the previous section, the BFFG for
the SRL was constructed using three different base environ-
ments: (x86, DOS, EXE), (x86, Windows, NE) and (Sparc,
Solaris, ELF). The ELF (on a RISC architecture) being the
most complex BFF of the three, the EXE (CISC) being the
simplest, and the NE (CI SC) somewhere in between. These
three formats alowed the develoopment of a generic BFF
grammar for the SRL.

When implementing an RL, one must consider to what
extent does this RL take part in the decoding of the binary
file. Doesit decode the whole file and rewrite it to another
representation or doesit simply load the wholefile to mem-
ory? How much detail isinterpreted by the RL? In the case
of SRL, the primary function was to produce a high-level
language interface to represent the structures of the binary
file(i.e. aheader filein C), and theloading of the program’s
image (i.e. aCfile).

The input to the SRL is the BFF specification: a binary
description of the object filefor an environment (M,0S,BFF)
written in SRL's syntax grammar. Figure 4 isadescription
of what the SRL produces. The object structuresarethetype
definitionsfor various regions of the binary executable file.
The loading routine containsinitialized information for the
object structuresand | oading of the object imageto memory.
The object structure and loading routineare implemented as
.H and .C files respectively using the C language.

Object specification Simple Retargetable
-
(M, O3, BFF) Loader

AN

Object structures for Loading routine for
M, OS, BFF) M, OS, BFF)

Figure 4. The Simple Retargetable Loader
(SRL)

The specificationsfor (x86, DOS, EXE), (x86, Windows,
NE) and (Sparc, Solaris, ELF) were used as inputs to the
SRL and the set of corresponding .H and .C interface files
were produced. The SRL output for the (x86,DOS,EXE)
specification islisted in Figures 5 and 6. The data structure
for manipulating the binary is generated inthe .H file while
the .C file provides a function Loadl mage() which ini-

/* This file is generated by the BFF
generator using the grammar in
"dosexe.txt" */

#i fndef _LQAD H_
#define _LQAD H_

#ifdef __MSDOS__

#define INT int

#define LONG unsigned |ong
#el se

#define INT short int

#define LONG unsigned int
#endi f _ MBDOS

t ypedef unsigned char byte;
typedef short int16;

#define LH(p) ((int16)((byte*)(p))[0]+
((int16) ((byte*)(p))[1] <<8))

typedef struct {
byte h_siglLo;
byte h_sigH ;
INT h_l ast PageSi ze;
I NT h_nunPages;
I NT h_nunRel oc;
INT h_nunPar aHeader ;
INT h_m nAlloc;
INT h_maxAl | oc;
INT h_initSs;
INT h_initSP,
INT h_checkSum
INT h_initlP;
INT h_initCs;
INT h_relcTabO fset;
INT h_overlayNum
} headerT,;

typedef struct {

header T *header ;
byt e* section;
char* fil enane;
LONG i magesi ze;
byt e* i mage;

} BFF;

extern BFF* aBFF;
Loadl mage(char* fil enan®e);

#endif _LOAD H_

Figure 5. loader.H file generated by SRL

tializes the aBFF structure and finds the entry point to the
program.

Surprisingly, the specification for the Windows NE man-
aged to be larger than that for the ELF, athoughthe ELF is
presumed to be the most complex format of the three. Per-
hapsif the grammar had more constructs, then finer details
could be captured. In that case, we would see more of the
ELF structure. But isthat part of the loader? Or doesit de-
pend on the needs of the manipulationtool ? Doesthe loader
need to examine and be able to identify and understand all
the different regions of the object file? How much dispo-
sure should the loader know? Due to al these questions,
a complete interface is still left as discussion and work in
progress.

To examinethe usability of the SRL’s output, thusdemon-
strating the generality and usefulnessof an RL ; thegenerated
loadingfiles (.H and .C) produced from the (x86,DOS,EXE)
specification were integrated with the DCC decompiler [3].
The hand-coded |oading module for the Intel 286 DCC de-
compiler was replaced with the corresponding SRL outputs.
With afew minor changes (calsto function names and vari-
ablesused were changed), DCC was reconstructed using the
generated loading files. The behaviour for thetwo versions
of DCC was the same, hence demonstrating the correctness
of the SRL output.

6.1. Interface

The interface routines produced by the SRL are very
simple. The .C file merely provides a loading module for
setting up an image in memory (see Figure 6). Thisisfine
foraDOSEXE format asitisextremely ssimple, but for other
types of BFFs, onewould liketo provideinterface functions
to access different regions of the binary file. For example,
the Windows NE BFF has a number of tables — imported-
name table, segment table, modulereference table, etc. The
structure of the segment tablein the specification is:

DEFI NI TI ON seg_t abl e ADDRESS (sh_segToff + sho_off)
seg_tabl e_ent ARRAY sh_segTent
ste_l ogSectof f SIZE 16
ste_size SIZE 16
ste_flag Sl ZE 16
ste_minsize Sl ZE 16
END seg_t abl e_ent
END seg_table

The SRL createsthe structurefor the segment tableinthe
.H file and sets up a pointer that pointsto the beginning of
thetableintheimage. Thereare no routinesgenerated from
the SRL for accessing this structure. If the programmer
wants to access a particular entry in the table, then he/she
must directly manipulatethis structure by hand crafting that
piece of code.

A desirable feature for an RL would be to automatically
generate aset of interfaceroutines, thuseliminating theneed
for the programmer to hand code routinesto manipulate the
structures directly.

6.2. Limitation of SRL's BFFG

The SRL's BFFG was designed to be as simple as possi-
ble. It merely provides a most basic framework model for
cregtion of elementary loading routines. Most of the SRL
functions deal with information about the file header and
apply itsdefinitionsto the rest of the object file.

There are anumber of areas that the SRL grammar does
not include:

o Relocation information is not capture by the SRL but
can beincluded easily by adding new constructsto the
BFF grammar.

e System architectures such as big and little endian ma-
chine types are undefined. Such details need to be
added to the grammar as well. The techniquesused in
describing the DWG format can be used to identify the
byte ordering of the processor:

type word : =
byte : first,
byte : second,

return ((word)first | ((word)second << 8).

Alternatively, a much simpler way would be just re-
serving the words big-endian or little-endian and let
the SRL handle the byte ordering for these machines.

7. Summary and conclusions

There are essentialy three basic approaches to provide
loading of a binary object: handcraft the code, use library
routines or use specifications. A retargetable loader can be
built using library routines or specifications. Using library
routinesis simpler but can be difficult; attemptsto use tools
such as the BFD library are uninviting due to their com-
plexity. Specificationsare easily understood and are trouble
free once they have been developed. It is an ideal method
to develop aretargetable loader (RL) based on a binary-file
format (BFF) grammar.

There are a few differences between grammars used in
programming languages and the grammar used for describ-
ing BFFs. The most significant difference is the ability of
the BFF grammar to re-reference information that was pre-
vioudly defined. Previously defined information is critical
in binary file processing: addresses and segment sizes are
usually controlled by definitionsfound in thefile header and
their values are determined only &t run-time.

/* This file is generated by the BFF generator
using the grammar in "dosexe.txt" */

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude "l oader. h"
BFF * aBFF;
Loadl nage(char* fil enanme) {
FILE *fp;
LONG i nrageaddr ess;

if ((fp=fopen(filenane, "rb"))==NULL) {

printf("cannot open file ");
return O;

}

aBFF = (BFF *)nmal | oc(si zeof (BFF));

aBFF- >header

fseek(fp,

if (fread(aBFF->i nage,
printf("error reading inage
return O;

(si ze_t)aBFF->i nagesi

")
}

i mageaddr ess

aBFF- >secti on
aBFF->fil enanme = (char*) mall oc(si zeof (char)
strcpy(aBFF->fil ename, fil enane);
fclose(fp);

}

/* Loadl mage */

= (headerT *)nmal | oc(si zeof (headerT));

if (fread(aBFF->header, sizeof(headerT), 1, fp) !'= 1) {
printf("cannot read file ");
return O;

}

aBFF->i magesi ze = LH(&BFF- >header - >h_nunPages) * 512 - LH &aBFF->header->h_nunPar aHeade
* 16 - (512 - LH &aBFF->header->h_| ast PageSi ze));

aBFF->i mage = (byte *)nall oc(aBFF->i magesi ze);
(I nt) LH(& BFF- >header - >h_nunPPar aHeader)

LH(& BFF- >header - >h_nunPar aHeader)

aBFF->i nrage + LH(&aBFF->header->h_initlP) + 16 - inageaddress;

* 16, SEEK_SET):

ze, 1, fp))!=1) {

*

16;

*

(strlen(fil ename)+1));

Figure 6. loader.C file generated by SRL

SRL, a smple retargetable loader, is a first at-
tempt to develop an RL with a simple BFF gram-
mar. To demonstrate how the SRL grammar works,
specifications for (x86,DOS,EXE), (x86,Windows,NE) and
(Sparc,Solaris,ELF) were created and used as input to the
SRL. The SRL outputsaset of object structures(.H file) and
loading routines (.C file) for each of the specifications. The
SRL outputsfor the (x86,DOS,EXE) specification file were

incorporated into an existing binary-manipulation tool (the
DCC decompiler) by replacing itsloading modules with the
SRL’'s loading output. The integration was successful and
the program behaved indifferently as before.

A retargetable loader has alot of potential. Being ableto
capture different binary-file structure is a big plus for soft-
ware devel opers wanting to write machine-code manipula
tion tools. Its ability to express BFF structure and provide

an amost automatic way to generate loading information
benefits particularly in the area of binary trandation. There
are still a lot of problems that are unsolved in this area.
Issues like how much detail is exposed to the loader, and
how to create a proficient and flexible RL still need to be
addressed. The most efficient and ided BFF grammar that
contain the most genera structures and constructs for al
system environments has yet to be devel oped.

SRL and its BFFG are currently under develop-
ment. SRL is part of an on going project on bi-
nary trandation a the University of Queensland, Aus
tralia. For current information on the project refer to
http://www.it.ug.edu.au/groups/csm/bintrans.html.

Acknowledgments

Wewould liketo thank the anonymous referees for com-
ments on improvements needed in this paper.

References

[1] AT&T. Fashport. http://www.att.com/ FlashPort/, 1994.
AT&T Bell Labs.

[2] S.Chamberlain. libbfd—TheBinary File Descriptor Library,
first edition — BFD version 3.0 edition, Apr. 1991.

[3] C. Cifuentes and K. Gough. Decompilation of binary pro-
grams. Software— Practice and Experience, 25(7):811-829,
July 1995.

[4] A. Corporation. Macintosh application environment.
http://mww.mae.apple.com/, 1994.

[5] Digital. Freeport express. http://www.novalink.com/
freeport-express, 1995.

[6] R. Duncan. The MSDOS Encyclopedia, chapter 4, pages
107-147. Microsoft Press, 1988.

[71 F Faase. DWG file format. http://
wwwis.cs.utwente.nl:8080/ faase/BFF/dwg f.html, 1996.

[8] R.Gray, V. Heuring, S. Levi, A. Sloane, and W. Waite. Eli:
A complete, flexible compiler construction system. Commu-
nications of the ACM, 35(2):121-131, Feb. 1992.

[9] S. Johnson. YACC - yet another compiler-compiler. Tech-
nical Report 32, Bell Telephone Laboratories, Murray Hill,
NJ, 1975.

[10] M. Lesk. LEX - alexical analyzer generator. Technical
Report 39, Bell Telephone Laboratories, Murray Hill, NJ,
1975.

[11] T.Lindholmand F. Yellin. The Java Virtual Machine Spec-
ification. The Java Series. Addison-Wesley, Reading, Mas-
sachusetts, Sept. 1996.

[12] Microsoft. Miscrosoft windows software development kit
(SDK) for windows. Article ID: Q65260.

[13] R. Sites, A. Chernoff, M. Kirk, M. Marks, and S. Robinson.
Binary translation. Commun. ACM, 36(2):69-81, Feb. 1993.

[14] SunSoft. Wabi. http://ww.sun.com/sunsoft/Products/PC-
Integration-products/, 1994.

[15] T. Thompson. An Alphain PC clothing. Byte, pages 195—
196, Feb. 1996.

[16] W. Waite. Compiler construction: Craftsmanship or engi-
neering? In T. Gyimbthy, editor, Proceedingsof the Interna-
tional Conferenceon Compiler Construction, Lecture Notes
in Computer Science 1060, pages151-159, Linkdping, Swe-
den, 24-26 April 1996. Springer Verlag.

