
SRL – A Simple Retargetable Loader�
David Ung Cristina Cifuentes

Centre for Software Maintenance
School of Information Technology

University of Queenslandfdavidu,cristinag@it.uq.edu.au

Abstract

A loader is a systems program used by an operating
system (OS) to load a binary executable file onto memory to
execute it. The internal format of a binary executable file is
called the binary-file format (BFF); this format is dependent
on the OS and the particular computer architecture it runs
on.

Traditionally, when developing machine-code manipu-
lation tools such as binary translators and disassemblers,
developers need to write a decoder for each type of binary
executable file they want to manipulate, i.e. for n different
binary executables, they need to write n different loaders.
With the advent of binary translation technology and the
increased number of machines and operating systems, a re-
targetable loader (RL) would eliminate the effort required
in creating different loaders; if only one such environment
existed.

SRL, a simple retargetable loader, is a first attempt at
developing an RL framework by means of a simple BFF
grammar. Three different environments, (x86,DOS,EXE),
(x86,Windows,NE) and (Sparc,Solaris,ELF), were used as
the basis for the development and testing of SRL. The three
environments give a good coverage of different BFFs cur-
rently in use by OSs for RISC and CISC machines.

1. Introduction

Machine-code manipulation tools such as binary trans-
lators, disassemblers, decompilers, binary debuggers, and
tracers or profilers, are systems programming tools that in-
teract with the computer’s operating system (OS) to either
translate low-level machine instructions into a higher level
of abstraction (e.g. in the case of disassemblers, decompil-
ers and debuggers), or to another low-level of abstraction�This work is partially supported by Sun Microsystems Laboratories
and the Australian Research Council under grant No. A49702762.

(e.g. in the case of binary translators). The first step in
developing any machine-code manipulation tool is to under-
stand the source binary-file format (BFF) of the executable
program1; i.e. the type of information it stores, how it is
stored, and how it can be accessed or retrieved. Users of
computer programs are normally not concerned with any of
these issues since the OS automatically handles the loading
of the program into memory.

When a program is to be executed in memory, the OS
first extracts all necessary information from the executable
file’s header and carries out any necessary actions (e.g. re-
location) before putting it into memory. In other words, the
OS decodes the executable file into an understandable rep-
resentation in memory and passes control to the program for
its execution. This process is often described as the loading
of a program.

The general object code decoding abstraction for the pur-
poses of creating machine-code manipulation tools is shown
in Figure 1, where we describe the environment of a binary
executable by means of a triplet (M,OS,BFF). M denotes a
machine or computer architecture, OS denotes the operating
system used by that machine, and BFF denotes the binary-
file format used by that operating system. In Figure 1, a
source object file (M1,OS1,BFF1) is fed into a loader which
decodes file-related information. The program’s text is then
decoded based on M1’s machine instruction set onto an in-
termediate representation that is suitable for the particular
machine-code manipulation tool. For example, a binary
translator will need to translate the intermediate representa-
tion onto another target object code program for a different
environment (M2,OS2,BFF2); a disassembler will need to
produce an assembly code program; and a decompiler will
need to produce a high-level language program. Each of
these tools will require a different level of abstraction in
their intermediate representation.

1Different names are used in the literature to refer to executable pro-
grams: binary programs, object code, binary executables, or executable
programs. All of these names are used as synonyms in this paper, and refer
to the end product of the compilation and linkage process.



Figure 1. Object code decoding abstraction

Binary translators are of particular importance in this
study as they interact with BFFs twice; once during the de-
coding of the source eecutable program, and once during
the encoding of the new target executable program. Exist-
ing binary translators such as Digital’s VEST and mx [13],
Freeport Express [5] and FX!32 [15]; Sun’s Wabi [14]; Ap-
ple’s MAE [4] and AT&T’s Flashport [1] support one or two
different platforms only. We are developing a retargetable
binary translation framework that supports a larger set of
platforms.

1.1. Retargetable loading

Traditionally, when developing a machine-code manipu-
lation tool, developers need to write a decoder for every BFF
they want to manipulate. For example, if we want to write
a disassembler for an Intel x86 machine running DOS and
using the EXE binary file format [6, 12], we write a loader
for the EXE format and a decoder of machine instructions
for (x86,DOS). If we then decide to write another disassem-
bler for the Windows New Executable (NE) BFF [6, 12], we
need to write another loader for NE and a modified machine
instruction decoder for (x86,Windows) as the interface to
information on the BFF is different. So, if we have n dif-
ferent (M,OS,BFF) tuples, we will need to write n different
loaders.

A systems programmer developing a machine-code ma-
nipulation tool and wanting to test the new tool on A different
machine architectures, using B different operating systems
and C different BFFs, will need to write AxBxC different
loaders. However, the process carried out by all loaders is
similar despite the fact that the (M,OS,BFF) tuples are dif-
ferent. Ideally, developers would like to write as minimum
code as possible in order to cater for different (M,OS,BFF)
tuples. This approach is possible with the development of
reusable components that are automatically generated from
specifications; i.e. a retargetable loader (RL) framework.

The input to the RL framework is a BFF specification
and a binary executable. The BFF specification is an unam-
biguous description of a binary-file format. The output of
the RL is a high-level language interface for the loading of
the program.

The rest of this paper is structured in the following way.
Section 2 discusses previous works related to the design of a
retargetable loader. Section 3 describes the development of
an RL using specifications; structure of binary-file formats
(BFFs) are discussed in Section 4. The BFF properties and
the grammar used by the Simple Retargetable Loader (SRL)
are the main topic of Section 5. Section 6 describes how we
tested the SRL and the results accomplished. A summary
and conclusion follow the paper.

2. Previous work

A few methods and tools are currently available for cap-
turing binary information stored in executable programs.
Overall, there are 3 different approaches that can be used in
developing a loader (or any other system tool) [16]:

1. hand-craft the code,

2. use library routines to assist in the writing of the code,
or

3. use specifications for automatic generation of the code.

The first approach is the easiest and quickest to imple-
ment, although sometimes tedious to test. This simplicity
advantage is only good for creating loaders that are lim-
ited to the knowledge of one BFF. As described earlier, one
would need to hand craft n different loaders for n differ-
ent (M,OS,BFF) system tuples, and hence this approach is
unsuitable for retargetability purposes.

Approaches 2 and 3 can be time-consuming to implement
at first (i.e. developing the library or the generator of code
based on specifications), however, once this time investment
has been made, the production of other loaders is quick and
simple. An overhead in learning the tool at hand will always
be needed though. Either approach provides support for the
creation of an RL framework. A widely used example of the
second approach is provided by the Binary-File Descriptor
(BFD) library [2], which uses an extensive structure to rep-
resent details within a binary file; routines for new BFFs are
added to the library incrementally. An example of the third
approach was attempted in the DWG (AutoCAD) work [7],
which uses a specification language to describe the contents
of the file. Both these methods are reviewed in the coming
subsections.

With the recent trend towards Java and portable software,
the use of machine-independent representations to store the
final "executable" program is bound to grow. Java "exe-
cutable" programs are binary representations of bytecodes



for an abstract stack machine. This machine is implemented
by the Java Virtual Machine (VM) [11]. Java "executa-
bles" also contain other information required by the VM for
execution of the program.

The creation of a library interface for loading such byte-
code programs, or the specification of such binary format,
are possible. However, the loading of the program as such
will be governed by rules in the VM rather than traditional
Von Neumann machine rules (i.e. execute machine instruc-
tions sequentially from the given entry point, following the
flow of control of the program). In the work reported in this
paper, we have concentrated on the traditional, in use, CISC
and RISC machines.

2.1. Binary-file descriptor library

GNU’s Binary-File Descriptor (BFD) Library [2] is a
package containing common routines that applications can
use regardless of their underlying binary-file format. The
BFD library divides each specified BFF into the front-end
and the back-end. The front-end interfaces between the user
and the BFD, while the back-end provides a set of calls
which the BFD front-end can use to decode and manage the
object file. To support a new BFF, the programmer needs to
create a new BFD back-end and add it to the library.

BFD has its own binary representation for internal pro-
cessing known as the canonical object file format. When
an object file (M,OS,BFF) is opened, the front-end BFD
routines automatically determine the format of the input
object-file. A descriptor is built in memory with informa-
tion about which routines are to be used to access elements
of the object file’s data structure. When the program wants
information about the object files, the BFD reads from dif-
ferent sections of the file and processes them. Each BFD
back-end will have routines to convert section representa-
tions of the object file to BFD’s internal canonical object-file
format.

The BFD library is a good example of using library rou-
tines to develop an RL. Unfortunately, the library itself is
very large; the number of functions offered in the front-end
are exceptionally many. The BFD front-end was designed
in mind to allow programmers to be able to retrieve all types
of information about any BFF; at least the existing ones at
the time. Due to its generality and bulkiness, it is difficult to
use without spending a big overhead on learning how to use
it. Perhaps because it is too general, it often contain more
information than is needed for system applications.

2.2. DWG-based grammar

An initial attempt at developinga BFF grammar was done
by Faase using the AutoCAD’s DWG format [7]. In this
grammar, terminal symbols consist of a number of bytes

and are the fundamental set of base types found in most
programming languages: char, int, long, float and double.
A binary object file is viewed as a stream of bytes. The
grammar supports different byte ordering for integers, and
different formats for floating point numbers for various ma-
chines. For example, the definition of a word representation
in a little-endian machine is given by:

type word :=
byte : first,
byte : second
return ((word)first | ((word)second << 8).

In a little-endian machine, the lower order byte is stored
before the higher order byte. New types are defined as a
series of bytes following this rule:

type_def_rule :=
"typedef" data_type basic_type_name ":="
("byte" ":" byte_name) LIST
"return" expr ".".

AutoCAD’s file format contains a header, several sec-
tions and blocks of information related to 2D or 3D draw-
ings. This general file structure resembles that of a simple
BFF. However, the information stored in the sections is very
different as binary executables contain relocation informa-
tion, symbol table information, dynamic linking informa-
tion, and more. Also, since the DWG format is used as the
basis for development, the resulting grammar is biased to-
wards DWG. A complete specification for the DWG format
can be found in [7].

3. Developing a retargetable loader via specifi-
cations

The use of specifications in the development of software
engineering tools is not new. Parser and compiler genera-
tor tools based on specifications, such as lex [10], yacc [9]
and Eli [8], have been around for a while and have proven
to be very useful. The input to these generator tools is
often a specification, usually in the form of a context free
grammar commonly found in specifying the syntax of pro-
gramming languages. This concept can also be applied to
binary objects where each of the BFFs can be specified in
a grammar that can be understood by the RL. The resulting
object file specification needs to contain information about
the structure of the object file and how various sections can
be accessed. Each specification acts as a framework for all
object files in the group, i.e. a template for all objects be-
longing to the environment (M,OS,BFF). In programming
language terms, the BFF template resembles the variable
types while each of the object files is an instance of this
type.



Figure 2. Developing an RL via specification

Figure 2 describes the RL approach; an object file
(M1,OS1,BFF1) has a specification template according to
the syntax of the BFF grammar. A retargetable loader would
use the template information as the basis for processing the
object file (M1,OS1,BFF1).

4. Binary-file formats

The general structure of a BFF can be seen to be made
up by the following abstraction:� A header containing general information about the pro-

gram and information needed to access various parts of
the file.� A number of sections holding code and data (raw data).� Relocation table(s).� Symbol table information.

Most BFFs can be mapped to the general model in Fig-
ure 3. Information regarding the location of sections, sym-
bol tables, etc are usually identified within the file header.
Nevertheless, some BFFs do not distinguish between these
structures; in the DOS EXE format, the file header contains
information about the relocation table, but there is no in-
formation about where the symbol table is stored (if any),
and where data is; there is only one section that embodies all
code, data and symbol table information. In all cases though,
the program’s header will contain enough information to de-
termine the entry point (i.e. the start of the program’s code)
in the file.

The current development domain for our tools is based on
the DOS EXE format [6, 12] Windows (16-bit) NE [6, 12]
and Solaris ELF [14] BFF formats. These formats vary in
their degree of complexity and information stored: the DOS
EXE is very simple and limited in structure, whereas the
Solaris ELF format is the most complex, while the Win-
dows NE is somewhere in between. For example, for a
simple “Hello world” program, using a DOS EXE file will
contain a file header, relocation table and a single image
for both code and data. The Windows NE version wil

Figure 3. BFF abstraction

contain most DOS EXE information plus additional de-
tails such as the resource table, entry table, etc. The ELF
format contains even more information about the file; sec-
tions within the object file hold information used in dy-
namic linking: code, data, relocation tables, symbol ta-
bles, dynamic linking information, etc. Typical “Hello
world” binaries for (x86,DOS,EXE), (x86,Windows,NE)
and (Sparc,Solaris,ELF) are 6432, 16384 and 5280 bytes
long respetively. It can clearly be seen that although the
latter two files are dynamically linked, their sizes are not
necessarily smaller than the static (first) case. This is due to
the small nature of the example program and the inclusion
of the DOS EXE header information within the NE format.

5. BFF grammar

In this section we describe the BFF grammar developed
based on the EXE, NE and ELF formats. We start by describ-
ing some of the properties of BFFs, followed by a description
of the grammar itself.

5.1. BFF properties

In a binary file, some parts within the file are interrelated.
Although the structure of the binary file does not change
at run-time, it’s file size, location of sections (or regions)
and contents can vary significantly, sometimes having in-
formation at the end of the file refering to sections in the
middle of the file. Because of this behaviour, the ability of
the grammar to reference previously defined information is
very important. The resulting grammar not only needs to
be general, it must also be flexible to assist the final RL in
re-referencing previously parsed information. Information
that needs to be re-referenced is usually found in the file
header of the binary object file. As the specification for a
particular BFF is parsed, any reference to previously read
information needs to be handled appropriately.

The ability for a programming language to re-use defined
information later in the program can be quite restricted.
Although user defined types can be referenced later when



declaring instances, they do not have a value. Macros in
languages can be used (referenced) throughout the rest of
the program after its definition, but their values are fixed and
cannot be changed. In contrast, each binary file of a given
BFF has its own set of records that identifies itself. The BFF
specification captures the structure of these records, but not
its information. The general structure of the BFF is known
through the specification, however each instance of this BFF
can only be understood by an RL during its parsing process
at run-time. The specification defines the items in the file,
but their run-time values give meaning to other definitions
in the rest of the specification.

The following example will clarify the idea of re-
referencing in a BFF specification: let us assume we have
a “Hello World” program stored in a Windows NE BFF.
The segment table for the Windows NE BFF consists of a
fixed number of segment table entries. The exact number
of entries is listed as one of the fields in the program’s file
header–NumSegEnt. To create a copy of the segment table
for the “Hello World” program in memory, the RL must allo-
cate the number of entries according to NumSegEnt. In the
Windows NE specification, the definition of the file header
and segment table could be as follows:

FileHeader : STRUCTURE {
..
NumSegEnt : int;
..
}
SegmentTable : ARRAY NumSegEnt OF SegTableEnt;

In other words, the value of NumSegEnt is used to specify
the size of the array SegmentTable. In traditional languages,
the array size needs to be specified at compile time. How-
ever, in this language, the size of the segment table is only
known at run-time, hence the array is allocated at run-time
when the information becomes available. This behaviour
is what we refer to as re-referencing of information. Most
re-referenced information is located in the file header, but
sometimes this is not the case. For example, to locate the
segment table, the address where it can be located must be
defined:

SegmentTable : ARRAY NumSegEnt OF SegTableEnt;
ADDRESS NewHoff + SegToff;

The address is the addition of SegToff, found within
the second header, andNewHoff, located in the first header.

5.2. BFF grammar for simple retargetable loader

SRL, a simple retargetable loader, was constructed to de-
velop a tool that would support the developed BFF grammar,
and generate C code for the loading of a binary file stored
in the specified binary-file format. SRL requires a generic
BFF grammar such that it can be easily extended if later

found insufficient to describe other BFFs. Our focus has
been mainly on three BFFs: DOS EXE, Windows (16 bit)
NE and Solaris ELF formats. The difference in complexity
between these BFF (DOS EXE–simple, Solaris ELF–very
general and Windows NE–moderate) gives an indication of
how well the grammar works. We present the abstract syn-
tax of BFFG, SRL’s BFF grammar. The grammar syntax is
in extended BNF (EBNF) format. EBNF has the following
language symbols:� Sequences are denoted by fg. E.g. frepg specifies zero

or more repetitions of rep.� Optional is denoted by []. E.g. [opt] specifies zero or
one occurrences of opt.� Selection is denoted by j. E.g. A j B j C specifies a
choice between A, B and C.

In the grammar, non-terminals appear in italics, termi-
nals appear in normal fontface, “literal strings” appear with
double quotes, and examples appear in courier. The start
symbol for this grammar is BFFspec:

BFFspec => fspecg.
spec => format-def defin fdefing load-info
format-def => “DEFINITION” “FORMAT”

ident fidentg “END” “FORMAT”
defin => “DEFINITION” ident

“ADDRESS” expression scope-def
“END” ident.

load-info => “FILEHEADER” ident
“IMAGESIZE” expression
“IMAGEADDRESS” expression

scope-def => ident type-exp fident type-expg
type-exp => “SIZE” expression j

“ARRAY” expression scope-def
“END” ident

expression => “(” ident operator expression “)”j ident operator expression j �
operator => “+” j “-” j “*” j “/” j “’̂’ j “%”
ident => “a”..“z” j “A”..“Z” f“a”..“z” j

“A”..“Z” j “ ”g
Hence, the body for any BFF specification is of the form:

spec=> format-def defin fdefing load-info

5.2.1 format-def

format-def => “DEFINITION” “FORMAT”
ident fidentg “END” “FORMAT”

The format-def non-terminal specifies the overall struc-
ture of the BFF. All ident names used for sections/divisions
of the binary file defined as part of format-def must be de-
fined later in the specification although the format need not
include all parts of a BFF; i.e. some entries can act as space
fillers that separate different parts of the file. An example
definition of format-def for a simple BFF format is :



DEFINITION FORMAT
file_header
section

END FORMAT

In this example, file_header and section will
need to be defined later on in the grammar. If we want to
specify the DOS EXE file, then the relocation table would
go between the file_header and section. However,
if we are not concerned with its details, it can be omitted
from the definition. The organisation of identifiers is not
forced; it merely indicates the relative ordering of divisions.
The above definition does not suggest that section starts
at the end of file_header; in fact, section could be
placed before file_header. The syntax of format-def
does not place any ordering restrictions on it. But for clarity
and ease of understanding, the user should arrange the defi-
nitions in a well-formed manner so that it reflects the actual
file’s structure.

5.2.2 defin

Each declared identifier ident in a format-def is defined using
the following defin rule:

defin => “DEFINITION” ident
“ADDRESS” expression
scope-def
“END” ident

Defin declares a new structure (section or block of the
file). The ident that follows the keyword DEFINITION must
be previously declared in the grammar. The start location of
this new structure (relative to the start of the file) is specified
by the expression after the keyword ADDRESS; e.g. the
definition of the file_header might look like this:

DEFINITION file_header ADDRESS 0
h_sigLo SIZE 8
h_sigHi SIZE 8
h_lastPageSize SIZE 16
..

END file_header

The above definition indicates that the file_header
starts at the beginning of the file (i.e. offset 0). All declara-
tions that follow the ADDRESS belong to this definition; in
the above case the file_header. The entries h_sigLo,
h_sigHi and h_lastPageSize all belong to the same
scope level and have a parent named file_header. This
concept is equivalent to the definition of a structural type in
most programming languages.

5.2.3 Loading-info

load-info => “FILEHEADER” ident
“IMAGESIZE” expression
“IMAGEADDRESS” expression

Load-info holds the fundamental information about the
object file for loading to occur. It is crucial for any BFF
specification to provide its loading information. There is
no order on the occurrence of the three constructs, as long
as all three exist in the specification. The FILEHEADER
construct identifies the first region of the object that must be
loaded into memory. This region is often the file header as
it contain critical information about the locations of other
regions and some house keeping information. The IMAGE-
SIZE specifies the load image size; the size is often calcu-
lated based on the information obtained in the file header.
The IMAGEADDRESS specifies the start address (relative
to the beginning of the file) where the image is stored.

5.2.4 scope-def

scope-def=> ident type-exp fident type-expg
Scope-def captures all information belonging to the same

scope level withinone structure. Its properties are analogous
to the structural types in the language C. An ident name and
type information defines each field within the scope.

5.2.5 type-exp

type-exp => “SIZE” expression j
“ARRAY” expression scope-def
“END” ident

Type-exp defines the type for the identifier ident in bits.
An identifier can be either a single element of a particular
size or a group that is specified by the ARRAY construct.
The expression after the keyword ARRAY identifies the
number of elements in the ARRAY. Declarations within the
ARRAY definition are bounded to the same scope, with array
identifier being their parent. For example, the definition of
the segment table in the Windows NE format follows:

DEFINITION seg_table ADDRESS (sh_segToff + sho_off)
seg_table_ent ARRAY sh_segTent

ste_logSectoff SIZE 16
ste_size SIZE 16
ste_flag SIZE 16
ste_minsize SIZE 16

END seg_table_ent
END seg_table

In the Windows NE format, the segment table is defined
to be an array of structures named seg_table_ent. The
number of array elements is sh_segTent, which must
have been parsed earlier in the specification and its value
is used at run-time. ste_logSectoff, ste_size,
ste_flag and ste_minsize are the components (or
fields) of one element of seg_table_ent.



6. Experimentation

SRL, the Simple Retargetable Loader, is an attempt to
demonstrate the benefit of using an RL to build a machine-
code manipulation tool. It is a scaled downed version of an
RL and is implemented in C. The SRL is limited in a way by
its simple grammar which contains a small number of con-
structs. As described in the previous section, the BFFG for
the SRL was constructed using three different base environ-
ments: (x86, DOS, EXE), (x86, Windows, NE) and (Sparc,
Solaris, ELF). The ELF (on a RISC architecture) being the
most complex BFF of the three, the EXE (CISC) being the
simplest, and the NE (CISC) somewhere in between. These
three formats allowed the develoopment of a generic BFF
grammar for the SRL.

When implementing an RL, one must consider to what
extent does this RL take part in the decoding of the binary
file. Does it decode the whole file and rewrite it to another
representation or does it simply load the whole file to mem-
ory? How much detail is interpreted by the RL? In the case
of SRL, the primary function was to produce a high-level
language interface to represent the structures of the binary
file (i.e. a header file in C), and the loading of the program’s
image (i.e. a C file).

The input to the SRL is the BFF specification: a binary
description of the object file for an environment (M,OS,BFF)
written in SRL’s syntax grammar. Figure 4 is a description
of what the SRL produces. The object structures are the type
definitions for various regions of the binary executable file.
The loading routine contains initialized information for the
object structures and loading of the object image to memory.
The object structure and loading routine are implemented as
.H and .C files respectively using the C language.

Figure 4. The Simple Retargetable Loader
(SRL)

The specifications for (x86, DOS, EXE), (x86, Windows,
NE) and (Sparc, Solaris, ELF) were used as inputs to the
SRL and the set of corresponding .H and .C interface files
were produced. The SRL output for the (x86,DOS,EXE)
specification is listed in Figures 5 and 6. The data structure
for manipulating the binary is generated in the .H file while
the .C file provides a function LoadImage() which ini-

/* This file is generated by the BFF
generator using the grammar in
"dosexe.txt" */

#ifndef _LOAD_H_
#define _LOAD_H_

#ifdef __MSDOS__
#define INT int
#define LONG unsigned long

#else
#define INT short int
#define LONG unsigned int

#endif __MSDOS__

typedef unsigned char byte;
typedef short int16;

#define LH(p) ((int16)((byte*)(p))[0]+
((int16)((byte*)(p))[1]<<8))

typedef struct {
byte h_sigLo;
byte h_sigHi;
INT h_lastPageSize;
INT h_numPages;
INT h_numReloc;
INT h_numParaHeader;
INT h_minAlloc;
INT h_maxAlloc;
INT h_initSS;
INT h_initSP;
INT h_checkSum;
INT h_initIP;
INT h_initCS;
INT h_relcTabOffset;
INT h_overlayNum;

} headerT;

typedef struct {
headerT *header;
byte* section;
char* filename;
LONG imagesize;
byte* image;

} BFF;

extern BFF* aBFF;

LoadImage(char* filename);

#endif _LOAD_H_

Figure 5. loader.H file generated by SRL



tializes the aBFF structure and finds the entry point to the
program.

Surprisingly, the specification for the Windows NE man-
aged to be larger than that for the ELF, although the ELF is
presumed to be the most complex format of the three. Per-
haps if the grammar had more constructs, then finer details
could be captured. In that case, we would see more of the
ELF structure. But is that part of the loader? Or does it de-
pend on the needs of the manipulation tool? Does the loader
need to examine and be able to identify and understand all
the different regions of the object file? How much dispo-
sure should the loader know? Due to all these questions,
a complete interface is still left as discussion and work in
progress.

To examine the usability of the SRL’s output, thus demon-
strating the generality and usefulness of an RL; the generated
loading files (.H and .C) produced from the (x86,DOS,EXE)
specification were integrated with the DCC decompiler [3].
The hand-coded loading module for the Intel 286 DCC de-
compiler was replaced with the corresponding SRL outputs.
With a few minor changes (calls to function names and vari-
ables used were changed), DCC was reconstructed using the
generated loading files. The behaviour for the two versions
of DCC was the same, hence demonstrating the correctness
of the SRL output.

6.1. Interface

The interface routines produced by the SRL are very
simple. The .C file merely provides a loading module for
setting up an image in memory (see Figure 6). This is fine
for a DOS EXE format as it is extremely simple, but for other
types of BFFs, one would like to provide interface functions
to access different regions of the binary file. For example,
the Windows NE BFF has a number of tables – imported-
name table, segment table, module reference table, etc. The
structure of the segment table in the specification is:

DEFINITION seg_table ADDRESS (sh_segToff + sho_off)
seg_table_ent ARRAY sh_segTent
ste_logSectoff SIZE 16
ste_size SIZE 16
ste_flag SIZE 16
ste_minsize SIZE 16
END seg_table_ent

END seg_table

The SRL creates the structure for the segment table in the
.H file and sets up a pointer that points to the beginning of
the table in the image. There are no routines generated from
the SRL for accessing this structure. If the programmer
wants to access a particular entry in the table, then he/she
must directly manipulate this structure by hand crafting that
piece of code.

A desirable feature for an RL would be to automatically
generate a set of interface routines, thus eliminating the need
for the programmer to hand code routines to manipulate the
structures directly.

6.2. Limitation of SRL’s BFFG

The SRL’s BFFG was designed to be as simple as possi-
ble. It merely provides a most basic framework model for
creation of elementary loading routines. Most of the SRL
functions deal with information about the file header and
apply its definitions to the rest of the object file.

There are a number of areas that the SRL grammar does
not include:� Relocation information is not capture by the SRL but

can be included easily by adding new constructs to the
BFF grammar.� System architectures such as big and little endian ma-
chine types are undefined. Such details need to be
added to the grammar as well. The techniques used in
describing the DWG format can be used to identify the
byte ordering of the processor:

type word :=
byte : first,
byte : second,
return ((word)first | ((word)second << 8).

Alternatively, a much simpler way would be just re-
serving the words big-endian or little-endian and let
the SRL handle the byte ordering for these machines.

7. Summary and conclusions

There are essentially three basic approaches to provide
loading of a binary object: handcraft the code, use library
routines or use specifications. A retargetable loader can be
built using library routines or specifications. Using library
routines is simpler but can be difficult; attempts to use tools
such as the BFD library are uninviting due to their com-
plexity. Specifications are easily understood and are trouble
free once they have been developed. It is an ideal method
to develop a retargetable loader (RL) based on a binary-file
format (BFF) grammar.

There are a few differences between grammars used in
programming languages and the grammar used for describ-
ing BFFs. The most significant difference is the ability of
the BFF grammar to re-reference information that was pre-
viously defined. Previously defined information is critical
in binary file processing: addresses and segment sizes are
usually controlled by definitions found in the file header and
their values are determined only at run-time.



/* This file is generated by the BFF generator
using the grammar in "dosexe.txt" */

#include <stdio.h>
#include <string.h>
#include "loader.h"

BFF *aBFF;

LoadImage(char* filename) {
FILE *fp;
LONG imageaddress;

if ((fp=fopen(filename, "rb"))==NULL) {
printf("cannot open file ");
return 0;

}
aBFF = (BFF *)malloc(sizeof(BFF));
aBFF->header = (headerT *)malloc(sizeof(headerT));
if (fread(aBFF->header, sizeof(headerT), 1, fp) != 1) {

printf("cannot read file ");
return 0;

}
aBFF->imagesize = LH(&aBFF->header->h_numPages) * 512 - LH(&aBFF->header->h_numParaHeader)

* 16 - (512 - LH(&aBFF->header->h_lastPageSize));

aBFF->image = (byte *)malloc(aBFF->imagesize);
fseek(fp, (Int)LH(&aBFF->header->h_numParaHeader) * 16, SEEK_SET);
if (fread(aBFF->image, (size_t)aBFF->imagesize, 1, fp))!=1) {
printf("error reading image ");
return 0;

}
imageaddress = LH(&aBFF->header->h_numParaHeader) * 16;

aBFF->section = aBFF->image + LH(&aBFF->header->h_initIP) + 16 - imageaddress;
aBFF->filename = (char*) malloc(sizeof(char) * (strlen(filename)+1));
strcpy(aBFF->filename, filename);
fclose(fp);

} /* LoadImage */

Figure 6. loader.C file generated by SRL

SRL, a simple retargetable loader, is a first at-
tempt to develop an RL with a simple BFF gram-
mar. To demonstrate how the SRL grammar works,
specifications for (x86,DOS,EXE), (x86,Windows,NE) and
(Sparc,Solaris,ELF) were created and used as input to the
SRL. The SRL outputs a set of object structures (.H file) and
loading routines (.C file) for each of the specifications. The
SRL outputs for the (x86,DOS,EXE) specification file were

incorporated into an existing binary-manipulation tool (the
DCC decompiler) by replacing its loading modules with the
SRL’s loading output. The integration was successful and
the program behaved indifferently as before.

A retargetable loader has a lot of potential. Being able to
capture different binary-file structure is a big plus for soft-
ware developers wanting to write machine-code manipula-
tion tools. Its ability to express BFF structure and provide



an almost automatic way to generate loading information
benefits particularly in the area of binary translation. There
are still a lot of problems that are unsolved in this area.
Issues like how much detail is exposed to the loader, and
how to create a proficient and flexible RL still need to be
addressed. The most efficient and ideal BFF grammar that
contain the most general structures and constructs for all
system environments has yet to be developed.

SRL and its BFFG are currently under develop-
ment. SRL is part of an on going project on bi-
nary translation at the University of Queensland, Aus-
tralia. For current information on the project refer to
http://www.it.uq.edu.au/groups/csm/bintrans.html.

Acknowledgments

We would like to thank the anonymous referees for com-
ments on improvements needed in this paper.

References

[1] AT&T. Flashport. http://www.att.com/ FlashPort/, 1994.
AT&T Bell Labs.

[2] S. Chamberlain. libbfd – The Binary File DescriptorLibrary,
first edition – BFD version 3.0 edition, Apr. 1991.

[3] C. Cifuentes and K. Gough. Decompilation of binary pro-
grams. Software – Practice and Experience, 25(7):811–829,
July 1995.

[4] A. Corporation. Macintosh application environment.
http://www.mae.apple.com/, 1994.

[5] Digital. Freeport express. http://www.novalink.com/
freeport-express, 1995.

[6] R. Duncan. The MSDOS Encyclopedia, chapter 4, pages
107–147. Microsoft Press, 1988.

[7] F. Faase. DWG file format. http://
wwwis.cs.utwente.nl:8080/ faase/BFF/dwg f.html, 1996.

[8] R. Gray, V. Heuring, S. Levi, A. Sloane, and W. Waite. Eli:
A complete, flexible compiler construction system. Commu-
nications of the ACM, 35(2):121–131, Feb. 1992.

[9] S. Johnson. YACC - yet another compiler-compiler. Tech-
nical Report 32, Bell Telephone Laboratories, Murray Hill,
NJ, 1975.

[10] M. Lesk. LEX - a lexical analyzer generator. Technical
Report 39, Bell Telephone Laboratories, Murray Hill, NJ,
1975.

[11] T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
ification. The Java Series. Addison-Wesley, Reading, Mas-
sachusetts, Sept. 1996.

[12] Microsoft. Miscrosoft windows software development kit
(SDK) for windows. Article ID: Q65260.

[13] R. Sites, A. Chernoff, M. Kirk, M. Marks, and S. Robinson.
Binary translation. Commun. ACM, 36(2):69–81, Feb. 1993.

[14] SunSoft. Wabi. http://www.sun.com/sunsoft/Products/PC-
Integration-products/, 1994.

[15] T. Thompson. An Alpha in PC clothing. Byte, pages 195–
196, Feb. 1996.

[16] W. Waite. Compiler construction: Craftsmanship or engi-
neering? In T. Gyimóthy, editor, Proceedings of the Interna-
tional Conference on Compiler Construction, Lecture Notes
in Computer Science 1060, pages 151–159,Linköping, Swe-
den, 24-26 April 1996. Springer Verlag.


