
International Technical Support Organization

OS/2 Warp (PowerPC Edition)
A First Look

December 1995

SG24-4630-00

International Technical Support Organization

OS/2 Warp (PowerPC Edition)
A First Look

December 1995

SG24-4630-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the
general information under “Special Notices” on page xiii.

First Edition (December 1995)

This edition applies to OS/2 Warp Connect (PowerPC Edition) Version 1.0.

Order publications through your IBM representative or the IBM branch office serving
your locality. Publications are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing
Chapter 1. If the form has been removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JLPC Building 14 Internal Zip 5220
1000 NW 51st Street
Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract with IBM Corp.

Abstract

This document is unique in its detailed coverage of OS/2 Warp (PowerPC
Edition) architecture. It focuses on the architecture of the microkernel. It
provides information about the microkernel based architecture, which will
give dramatic advances in computing architecture.

This document was written for IBM customers, system engineers, software
developers. Basic understanding of OS/2 is assumed.

(178 pages)

 Copyright IBM Corp. 1995 iii

iv OS/2 Warp (PPC)

Contents

Abstract . i i i

Figures . ix

Tables . xi

Special Notices . xii i

Preface . xv
How This Document is Organized . xv
Related Publications . xvi
International Technical Support Organization Publications xvi
ITSO Redbooks on the World Wide Web (WWW) xvii
Acknowledgments . xviii

Chapter 1. Introduction . 1

Chapter 2. The IBM Microkernel . 5
2.1 Elements of the IBM Microkernel . 6

2.1.1 Physical Resource Management . 7
2.1.2 I/O Support . 9
2.1.3 Inter Process Communication (IPC) 10
2.1.4 Tasks and Threads . 16
2.1.5 Virtual Memory Management . 20

2.2 Elements of the IBM Microkernel Services 22
2.2.1 Initializing the Microkernel Services 23
2.2.2 Task Manager . 24
2.2.3 External Memory Managers . 25
2.2.4 Default Pager . 26
2.2.5 Root Name Server . 26

Chapter 3. System Services . 31
3.1 Device Support . 31
3.2 Event and Window Services . 32

3.2.1 Screen Group and Session Management 33
3.2.2 Event Services . 34

3.3 File Services . 40
3.3.1 File Service Client . 41
3.3.2 File Services Server . 42
3.3.3 Thread and Port Model . 43

 Copyright IBM Corp. 1995 v

3.3.4 File Services Pager . 43
3.3.5 Physical File System (PFS) . 44
3.3.6 Volume Manager . 47

3.4 Pipe Services . 48

Chapter 4. OS/2 Functions . 51
4.1 OS/2 Server . 51

4.1.1 OS/2 Server Architecture . 51
4.1.2 Configuration . 55
4.1.3 Components Of The OS/2 Server 56
4.1.4 Loader . 65
4.1.5 Startup . 67
4.1.6 Shutdown . 69

4.2 The MVM Environment . 72
4.2.1 OS/2 Warp (Intel) Multiple Virtual DOS Machine 73
4.2.2 OS/2 Warp Connect (PowerPC Edition) MVM Environment . . . 75
4.2.3 Installation . 76
4.2.4 Multiple Virtual Machine Server 77
4.2.5 EM86 (8086 Emulation) . 79
4.2.6 Instruction Set Translator . 79
4.2.7 DOS Emulation . 80
4.2.8 Virtual Device Drivers . 82
4.2.9 Windows Support . 84
4.2.10 Changes to The Command Set 84
4.2.11 Changes to the MVM DOS Settings 86

4.3 Graphics Subsystem . 87
4.3.1 Graphics Subsystem Overview . 87
4.3.2 Graphics Engine . 89
4.3.3 PM Video Device Driver . 92
4.3.4 Base Video Services . 98
4.3.5 Fonts . 108

4.4 Graphics Subsystem Summary . 118
4.5 Printing Services . 119

4.5.1 Spooler Objects . 120
4.5.2 Printing from DOS and Windows 122
4.5.3 Printer Driver Support . 122

4.6 System Management. . 122
4.6.1 Installation . 123
4.6.2 System Management Initialization Process 124
4.6.3 Serviceability Tools . 124
4.6.4 Vital Product Data . 127

Chapter 5. Installation . 129

vi OS/2 Warp (PPC)

5.1 Media Preparation . 129
5.1.1 Partitioning . 130
5.1.2 System Migration . 131

5.2 Feature Install . 131
5.2.1 Feature Install Catalog . 132
5.2.2 Drag and Drop Install . 132
5.2.3 Install Objects . 132
5.2.4 Inventory Objects . 133

5.3 Inventory Information . 134
5.4 CID and Unattended Installation Support 135

5.4.1 Standard Keywords . 135
5.5 Tracing Installation Problems . 138

5.5.1 Media Preparation . 138
5.5.2 Feature Install . 139

Chapter 6. Application Support . 141
6.1 Application Development . 141

Appendix A. Changes to MVM DOS Settings 143

Glossary . 149

List of Abbreviations . 161

Index . 165

Contents vii

viii OS/2 Warp (PPC)

Figures

 1. OS/2 Warp Connect (PowerPC Edition) Components 2
 2. RPC Linkage between Client and Server 14
 3. Root and Private Name Space . 28
 4. File Services Framework Overview 41
 5. Base API Calls Implementation . 52
 6. Main Interfaces of the OS/2 Server 54
 7. Handle Management Examples . 57
 8. Virtual Address Space Layout . 61
 9. MVDM Architecture . 74
10. MVM Architecture . 75
11. MVM Interrupt Processing . 81
12. OS/2 Warp Connect (PowerPC Edition) Graphics Subsystem 88
13. OS/2 Warp Connect (PowerPC Edition) Graphics Engine 90
14. GRE/Presentation Driver Design . 92
15. GRADD Model . 94
16. OS/2 WARP Connect (PowerPC Edition) PM Video Device Driver

Model . 98
17. VIDEOPMI Accessed from GRADD . 99
18. OS/2 Warp Connect (PowerPC Edition) Text Mode 103
19. VVIDEO Internal Architecture . 105
20. Overall Message Flow of OS/2 Warp Connect (PowerPC Edition) . 107
21. OS/2 Warp Connect (PowerPC Edition) Font Support 109
22. New Model for Font Architecture Support Under OS2 Warp Connect 114
23. Printing in OS/2 Warp Connect (PowerPC Edition) 120
24. Disk Partitions in the Boot Device . 130

 Copyright IBM Corp. 1995 ix

x OS/2 Warp (PPC)

Tables

 1. OS/2 Warp Connect (PowerPC Edition) Virtual Device Drivers . . . 83
 2. Changes to DOS Utilities . 85
 3. A Summary of OS/2 Warp Connect (PowerPC Edition) Graphics

Engine . 91
 4. OS/2 Warp Connect (PowerPC Edition) Font Format Support 112
 5. Encoding Font Algorithm . 116
 6. A Summary of Graphics Subsystem 119
 7. Unsupported CID Keywords in OS/2 Warp Connect (PowerPC

Edition) . 136
 8. Changes to the MVM DOS Settings. 143

 Copyright IBM Corp. 1995 xi

xii OS/2 Warp (PPC)

Special Notices

This publication is intended to help IBM customers, dealers and IBM system
engineers to provide an introduction in the architecture for OS/2 Warp
(PowerPC Edition). The information in this publication is not intended as the
specification of any programming interfaces that are provided by OS/2 for
PowerPC. See the PUBLICATIONS section of the IBM Programming
Announcement for OS/2 for PowerPC for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and
integrate them into the customer′s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

 Copyright IBM Corp. 1995 xiii

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

Other trademarks are trademarks of their respective companies.

FFST First Failure Support Technology
IBM

xiv OS/2 Warp (PPC)

Preface

This document is intended to provide an overview about the OS/2 Warp
Connect (PowerPC Edition) architecture. It contains information about the
microkernel which is the base for OS/2 Warp Connect (PowerPC Edition)
architecture.

This document is intended for IBM customers and employees requiring an
overview of the OS/2 Warp Connect (PowerPC Edition) architecture.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Introduction”

This chapter will give you an introduction to OS/2 for PowerPC.

• Chapter 2, “The IBM Microkernel”

This chapter describes the IBM microkernel. It will give an overview of
the new foundation for operating systems.

• Chapter 3, “System Services”

This chapter provides an overview of the system services, which behave
as a server to the operating system.

• Chapter 4, “OS/2 Functions”

This chapter provides an overview of the reasons why the OS/2 Warp
(PowerPC Edition) was conceived, and it also gives you an overview of
the OS/2 Warp (PowerPC Edition) architecture.

• Chapter 5, “Installation”

This chapter describes installation process of OS/2 Warp (PowerPC
Edition).

• Chapter 6, “Application Support”

This chapter describes application support and tools to convert from Intel
platform to PowerPC platform.

• Appendix A, “Changes to MVM DOS Settings”

This appendix describes the changes to the MVM DOS settings in OS/2
Warp (PowerPC Edition) versus the OS/2 Warp (Intel version).

 Copyright IBM Corp. 1995 xv

Related Publications
The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this document.

• Inside the PowerPC Revolution (by Jeff Duntemann and Ron Pronk) , ISBN
1-883577-04-7

• Exploring the PowerPC Revolution, ISBN 1-885068-02-6

International Technical Support Organization Publications
• OS/2 Version 2.0. Volume1: Control Program, GG24-3730

• OS/2 Warp (PowerPC Edition) Graphical Subsystem , SG24-4639

• PowerPC Series, SG24-4592 (not available yet)

A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on
MKTTOOLS as ITSOCAT TXT. This package is updated monthly.

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755
or by faxing 1-800-445-9269. Visa and MasterCard are accepted. Outside
the USA, customers should contact their local IBM office. Guidance may
be obtained by sending a PROFS note to BOOKSHOP at DKIBMVM1 or
E-mail to bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized
sets, called BOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

xvi OS/2 Warp (PPC)

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on the ITSO World Wide
Web home page. To access the ITSO Web pages, point your Web browser to
the following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. The internal
redbooks home page may be found at the following URL:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Preface xvii

Acknowledgments
This project was designed and managed by:

Lajos Damen
International Technical Support Organization, Boca Raton Center

Alex Gregor
International Technical Support Organization, Boca Raton Center

The authors of this document are:

Joachim Birke
IBM Germany

Rudi van Emmenes
IBM South-Africa

Juliandri Jenie
IBM Indonesia

Scott Rigby
IBM Australia

Terje Storstein
IBM Norway

This publication is the result of a residency conducted at the International
Technical Support Organization, Boca Raton Center.

Thanks to the following people for the invaluable advice and guidance
provided in the production of this document:

Scott Bennett
IBM OS/2 Warp (PowerPC Edition) Installation development, Boca Raton

Craig A. Bennett
IBM OS/2 Warp (PowerPC Edition) development, Boca Raton

Kenneth W. Borgendale
IBM OS/2 Warp (PowerPC Edition) architect, Boca Raton

Arnold H. Bramnick
IBM OS/2 Warp (PowerPC Edition) development, Boca Raton

xviii OS/2 Warp (PPC)

Mike Cooper
IBM OS/2 Warp (PowerPC Edition) development, Boca Raton

Robyn L. Focazio
IBM Microkernel development, Austin

Steve C. Heuer
IBM Microkernel development, Austin

Bryon S. Neitzel
IBM OS/2 Warp (PowerPC Edition) MVM development, Boca Raton

Chris P. Perritt
IBM OS/2 Warp (PowerPC Edition) development, Boca Raton

Pete C. Rodriguez
IBM OS/2 Warp (PowerPC Edition) Installation development, Boca Raton

James R. Schoech
IBM OS/2 Warp (PowerPC Edition) development, Boca Raton

Jim White
IBM Boca Raton

Kenneth E. White
IBM OS/2 Warp (PowerPC Edition) development, Boca Raton

Preface xix

xx OS/2 Warp (PPC)

Chapter 1. Introduction

OS/2 is now, for the first time, running on a different platform from the Intel
based personal computer. It now also runs on systems based on the
PowerPC architecture defined by the Apple, IBM and Motorola alliance.
The implementation of OS/2 Warp Connect (PowerPC Edition) is based on the
IBM microkernel.

The IBM microkernel is the foundation for a set of highly portable systems.
The microkernel provides a way of structuring systems software to reduce
complexity and increase its flexibility and portability.

The microkernel contains a small, message passing nucleus of system
software running in the most privileged state of the computer that controls
the basic operation of the machine. The IBM microkernel includes the
microkernel and a set of servers and device drivers that provide microkernel
services.

The functions performed by the microkernel are limited in order to reduce its
size and to maximize the amount of code that runs outside the kernel. The
microkernel includes only those functions required to provide a set of
abstract processing environments for application programs and to permit
applications to work together to provide services and acts as clients and
servers.

Many other operating system functions, such as file systems, device support,
and traditional programming interfaces are placed outside of the microkernel
for possible reuse of other operating systems developers.

The IBM microkernel uses technology from the Carnegie Mellon University
MACH Research Project. The IBM microkernel also incorporates selected
technology developed by the Open Software Foundations Research Institute.

This book gives you a first look in the components of OS/2 Warp Connect
(PowerPC Edition) as depicted in Figure 1 on page 2.

 Copyright IBM Corp. 1995 1

Figure 1. OS/2 Warp Connect (PowerPC Edition) Components

The IBM microkernel and the microkernel services are described in
Chapter 2, “The IBM Microkernel” on page 5.
The system services depicted in Figure 1 consist of the services which might
be useful to other operating system developers using the microkernel as a
base. The system services are:

• Event and window services
The main part of the session management of OS/2 is handled by this
component. Event and window services are also responsible for
handling all keyboard and mouse (and any other locator device) input.

• File services
Are responsible for handling all the file requests in OS/2 Warp Connect
(PowerPC Edition).

2 OS/2 Warp (PPC)

• Pipe services
All the pipe requests presented by application programs to the
DOSCALLS.DLL API library are managed by the pipe server.

The system services are described in Chapter 3, “System Services” on
page 31.
Chapter 4, “OS/2 Functions” on page 51 describes the OS/2 Control
Program and the Dos/Windows support of OS/2 Warp Connect (PowerPC
Edition).
The presentation services, which consist of the user interface, and the
components necessary to support it, are the topics of 4.3, “Graphics
Subsystem” on page 87.

To use the system, it has to be installed on a PowerPC-based machine. This
process is described in Chapter 5, “Installation” on page 129.

Applications supported, application migration considerations and applications
development, are the topics of Chapter 6, “Application Support” on
page 141.

Chapter 1. Introduction 3

4 OS/2 Warp (PPC)

Chapter 2. The IBM Microkernel

The OS/2 Warp Connect (PowerPC Edition) product is based on the
microkernel technology as shown in Figure 1 on page 2.

The idea of a microkernel-based operating system dates back to 1986, when
a team of researchers at Carnegie-Mellon University addressed several UNIX
problems, mainly concerning the inability to extend the UNIX operating
system due to its layered structure and the difficulty to easily port an
application from one vendor specific UNIX version to another vendor specific
UNIX version. The team at Carnegie-Mellon University solved this problem
by designing a client/server and message based microkernel, called Mach.
The IBM microkernel is based on this MACH microkernel and it also
incorporates selected technology developed by the Open Software
Foundation Research Institute. Additionally, IBM has made several
improvements to the microkernel in order to get a solid base for the OS/2
Warp Connect (PowerPC Edition) product.

The IBM microkernel provides the following comprehensive environment for
operating systems:

• Multiprocessing

• Multithreading

• Interprocess communication

• Extensible memory management

• Support for multiple operating personalities

The IBM microkernel also provides a concise set of IBM microkernel services
implemented as a pure kernel and an extensive set of services for building
operating system personalities implemented as a set of user-level servers.

 Copyright IBM Corp. 1995 5

Functions of the IBM microkernel include the following:

• Providing common programming for low-level system elements, such as
device drivers and file systems.

• Exploiting parallelism in both operating system and user applications.

• Supporting large address spaces with flexible memory sharing.

• Allowing transparent network resource access.

• Enabling compatibility with existing software environments, such as OS/2
and DOS/Windows.

• Enabling portability (to 32-bit and 64-bit platforms).

2.1 Elements of the IBM Microkernel
The IBM microkernel provides the following small set of abstractions:

• Task Unit of resource allocation: large address space and port
right

• Thread Unit of CPU utilization: lightweight (low overhead)

• Port A communication channel accessible only through the
send/receive capabilities or rights

• Memory object The internal unit of memory management

The functions performed by the microkernel are limited in order to reduce its
size and maximize the amount of code that runs outside the kernel. The
microkernel includes only those functions required to provide a set of
abstract processing environments for application programs and to permit
applications to work together to provide services and act as clients and
servers. The five type of services are:

 1. Physical resource management

 2. I/O support and interrupt management

 3. Interprocess communication (IPC)

 4. Tasks and threads

 5. Virtual memory management

These services offered by the IBM microkernel will be described in more
detail in the following paragraphs.

6 OS/2 Warp (PPC)

2.1.1 Physical Resource Management
The IBM microkernel brings the various resources it maintains to virtual
memory. However, all actions performed depend on the underlying physical
resources of the IBM microkernel.

Host Machines

A host is the multiprocessor as a whole. Each host (uniprocessor or
multiprocessor) in a networked IBM microkernel system runs its own
instantiation of the IBM microkernel. The host multiprocessor is not
generally manipulated by client tasks. But, because each host does carry its
own IBM microkernel, each with its own port space, physical memory, and
other resources, the executing host is visible and sometimes manipulated
directly. Also, each host generates its own statistics.

Hosts are named by a name port, which is freely distributed and can be used
to obtain information about the host, and a control port, which is closely held
and can be used to manipulate the host. Operations supported by hosts
include the following:

• Clock manipulation

• Statistics gathering

• System reboot

• Setting the default memory manager

• Obtaining lists of processors and processor sets

• Accessing hardware

Physical Processors

A physical processor is a unit capable of executing threads. Each physical
processor is named by a processor control port. Although significant in that
they perform the real work, processors are not very significant in the
microkernel, other than as members of a processor set. It is a processor set
that performs the basis for the pool of processors that is used to schedule a
set of threads and has scheduling attributes associated with it.

Processor Sets

Processors are grouped into processor sets. A processor belongs to only
one processor set. A processor set forms a pool of processors used to
schedule the threads assigned to that processor set. A processor set exists

Chapter 2. The IBM Microkernel 7

as a basis to uniformly control the schedulability of a set of threads. The
notion also provides a way to perform coarse allocation of processors to
given activities in the system.

A host contains a number of processor sets, including a default processor
set.

The operations supported upon processor sets include the following:

• Creation and deletion

• Assignment of processors

• Assignment of threads and tasks

• Scheduling control

Clocks

A clock provides a representation of the passage of time by incrementing a
time value counter at a constant frequency. Each host or node in a
multicomputer implements its own set of clocks based upon the various
clocks and timers supported by the hardware as well as abstract clocks built
upon these timers. The set of clocks implemented by a given system is set
at configuration time.

Each clock is named by both a name and a control or privileged port. The
control port allows the time and resolution of the clock to be set. Given the
name port, a task can perform the following:

• Determine the time and resolution of the clock

• Generate a memory object that maps the time value

• Sleep (delay) until a given time

• Request a notification or alarm at a given time

The clock facility implements one or more of the following clocks:

• The REALTIME clock which measures with moderate resolution the time
since system initialization.

• The standard defined BATTERY clock with low resolution which provides
a time value that is controlled exclusively by user-level code.

• The standard defined HIGHRES clock which enables high-resolution
alarm services.

8 OS/2 Warp (PPC)

Physical Memory

The various IBM microkernel objects and associated data structures occupy
physical memory. It is a hardware- and implementation-dependent issue as
to which of these structures can be swapped or paged out of memory.
Currently, clients have no control over this memory, except to the extent that
they create kernel-managed entities.

The majority of the system′s physical memory forms a single paging pool.
The pool of pages forms a cache for the virtual memory system. The set of
pages that resides in physical memory at any given time is decided by the
page-replacement algorithm, implemented in the kernel. Clients have no
control over this algorithm, with the exception of the vm_wire call which
forces a region of virtual memory to be and stay resident. Even external
memory managers have no influence; if they do not respond fast enough to a
request to write a page, the default memory manager is used to move the
page from physical memory to system paging storage.

When a memory object is no longer referenced, the kernel normally frees all
of its physical memory pages. A memory manager can mark an object ′s
pages as cacheable, meaning that the object′s pages are moved to a free list
but are not destroyed. This is usually specified for memory objects that
persist.

2.1.2 I/O Support
A modern computer system may support a wide range of buses, controllers,
and devices. The configuration services are responsible for locating and
managing all of the I/O related hardware resources that are visible to the
software in the system. They determine what I/O hardware is present and
grant device code access to it.

These configuration services consist of:

• The configuration manager, which identifies the machine and any built-in
hardware.

• The device manager, which is responsible for starting the device drivers.

• The resource manager, which controls this process.

In order to support I/O and device access, the microkernel provides access
to I/O resources, such as memory-mapped devices, I/O ports, and direct
memory access (DMA) channels. The DMA interfaces are used in providing
information and in programming certain hardware functions to transfer data
between memory and a device.

Chapter 2. The IBM Microkernel 9

2.1.3 Inter Process Communication (IPC)
The majority of interactions between an IBM microkernel task and its
environment are accomplished by sending and receiving messages. To
facilitate this, the microkernel provides synchronous one-way messaging as
well as a Remote Procedure Call (RPC) mechanism. Regardless of the
mechanism employed, all forms of IPC occur over IBM microkernel-provided
communication channels known as ports.

Ports

A port is a unidirectional communication channel between a client that
requests a service and a server that provides the service. A port has a
single receiver (server) and potentially multiple senders (clients) which are
connected in a secure fashion.

With the exception of the task′s virtual address space, all other system
resources are accessed through ports.

Any given entity can have multiple ports that represent it, each implying
different sets of permissable operations. For example, many entities have a
name port and a control port that is sometimes called the privileged port.
Access to the control port allows the entity to be manipulated. Access to the
name port simply names the entity, for example, to return information.

There is no system-wide name space for ports. A thread can access only the
ports known to its containing task (port name space, see below). A task
holds a set of port rights, each of which names a (not necessarily distinct)
port and which specifies the rights permitted for that port.

Every port is created as an instance of a port class. When created, a single
receive right (creator is server) for the port is established and also added to
the specified port name space.

Port Name Space (Portspace)

Port rights (port names) cannot be accessed directly but, instead, are
accumulated in port name spaces. The port name space assigns a local
name, for the right, that is used to access the right. Each task is associated
with a port name space that provides the context for interpreting names into
rights for all threads.

The names assigned within a port name space are completely at the
discretion of the Inter Process Communication (IPC) system. The user has
no control over these names, but the following guarantees are made:

10 OS/2 Warp (PPC)

• Receive and send (including the send-once restricted form) rights to the
same port coalesce to a single port name. That is, if a port name space
holds three send rights and a single receive right for a port, it will have a
single name for all four rights.

• Send rights are reference counted but only a single receive right can
exist for a port or port set.

• Port names are freed when all the reference counts go to zero.

Because a port name space is bound to its owning task, it is created and
destroyed with its owning task.

Port Classes

A port class defines the format of messages that can be transferred across
ports of this class. A port class may also be created as a combination of the
signature of a base port class and a specified new signature (signatures are
described in the messages section). Most ports have well defined messages
that are passed across them. This approach allows these formats to be
preregistered with the IPC system once, avoiding the overhead of verifying
their correctness on each message transfer.

After the port class is created, its message format can never change.
Additionally, the port class associated with a port cannot change and it also
cannot be explicitly destroyed. Instead, the port class will be retained until
the last reference to the port class goes away.

Port Rights

Because of their fundamental nature in the workings of the microkernel
system, ports are strongly protected. A port can be accessed only according
to the set of capabilities granted by the user. These capabilities, known as
port rights, are maintained on a port name space basis. Each task has an
associated port name space, and therefore can have a unique combination of
port rights for a particular port. This capability notion is the fundamental
security model and mechanism exported by the IBM microkernel.

The following port rights are maintained by the Inter Process Communication
(IPC) system:

• Receive right

This capability enables the holder to receive messages from the port
(holder acts as a server). Only a single receive right exists for a port,
and after it is destroyed it cannot be recreated. Therefore, a port whose

Chapter 2. The IBM Microkernel 11

receive right has been destroyed is considered dead. The receive right
also gives the holder the right to make send rights for the port.

• Send right

This capability enables the holder to send unlimited messages over the
port. Many send rights (clients) can exist for a single port.

• Send-once right

This capability enables the holder to send a single message over a port.
Many send-once rights can exist for a single port.

Notifications

Many tasks using a port can be notified, through a kernel-generated Remote
Procedure Call (RPC), when certain state transitions occur relative to the
port. Such notifications are requested when one of the following conditions
occur:

• Dead-Name state

When the receive right for a port is destroyed (server does not exist
anymore) this port is considered to have died. Any task which holds a
send right for this port can be notified of this state transition, when a
registration has been acquired accordingly.

• No-More-Senders state

When the last send or send-once right for a port is deallocated, the port
is equally unusable for message transmission. The holder of the receive
right for the port might be interested in this event in order to perform
garbage collection of resources associated with the port. Such tasks can
register for no-more-senders notifications.

Port Sets

A port set is a means of collecting a number of receive rights together into a
single unit for message-receipt purposes. When a receive operation is
performed against a port set, a message will be received at random from
one of the ports in the set. It is not allowed to directly receive a message
from a port that is a member of a port set. There is no notion of priority for
the ports in a port set.

The port set has its own name. A receive right can belong to only one port
set.

12 OS/2 Warp (PPC)

Messages

A message is a structured collection of direct data, indirect data, and port
rights passed between two entities through transmission over a port. The
message itself consists solely of data, addresses and port right names. Its
contents are interpreted based upon the signature registered for the port in
order to facilitate the data transfer.

For each particular port there may exist several message IDs and for each
message ID there is one signature which describes the elements of this
message. Thus, all signatures belonging to a particular port are described in
a data structure called signature collection, which has the following contents:

• The size, in bytes, of the signature collection

• A contiguous range of message IDs that are valid on the port

• An array of offsets into the signature collection for each message ID′s
signature

Message Transmission

The fundamental microkernel mechanism for message transmission is a form
of two-way messaging most closely related to Remote Procedure Call (RPC)
implementations. However, if the signature for a particular message ID
defines no return data, the client may choose to send the message as a
one-way message by invoking a special interface.

The following applies when messages are sent:

• The interpretation and transmission of the supplied message buffer is
driven by the message signature.

• All memory-addressing errors are handled through exceptions, not by
returning errors. The offending task will be terminated, unless the
exception is handled.

• All other errors are reported synchronously through return codes from
the messages APIs.

• Resource shortages in the sender, receiver, or kernel will cause
message transmission be silently blocked until resources become
available.

As already mentioned, there are two type of interprocess communication
within the microkernel environment: the Remote Procedure Call (RPC) and
the one-way message.

Chapter 2. The IBM Microkernel 13

Remote Procedure Call (RPC)

Although it is possible to emulate the RPC at user level through the use of
two ports and the one-way message-passing, such an approach could not
equal the performance offered by a kernel-supplied primitive tuned for RPC.
With this approach, a sender supplied reply port is not needed as the
microkernel RPC maintains a reply port inside the kernel, thus avoiding
overhead. Additional overhead at user-level code is avoided because
verifying messages on reply is not necessary because the reply message
format comes from the same signature.

Figure 2 shows the kernel-supplied reply ports and the RPC linkage between
the client and the server.

Figure 2. RPC Linkage between Client and Server

14 OS/2 Warp (PPC)

One-Way Inter Process Communication

In a one-way IPC, a message is sent without expecting a reply. The
signature for the corresponding message ID must specify that no reply data
is required. Unlike RPC, as soon as the data transfer to the server is
complete, the corresponding call completes.

Server Thread Support

A common practice is to have a set of threads in a task dedicated to
receiving messages and generating replies (where appropriate). This is the
sole function of these threads. Because this approach is so common, the
microkernel provides direct support for this practice.

After a thread has been made a message server, it cannot be safely
removed from its task without running the risks associated with
nonrestartable aborts.

Message Interface Generator

The Message Interface Generator is a program that generates Remote
Procedure Call (RPC) code for communication between a client and a server
process.

To use the Message Interface Generator the user has to provide a
specification file which defines the parameters for the message passing
interface and the procedure call interface.

Due to the contents of the specification file the Message Interface Generator
generates three files:

• User (Client) Interface Module: It implements and exports procedures and
functions to send and receive the appropriate messages to and from the
server.

• User (Client) Header Module: It defines the types and routines needed at
compilation time.

• Server Interface Module: It extracts the input parameters from an IPC
message and calls a server procedure to perform the operation. When
this procedure returns, the generated interface module returns the
procedures return code in the reply message with all output parameters
sent by reference. Note that this generated module does not perform the
action of receiving or sending messaging, only the interpretation and
processing of messages. Instead, the Message Interface Generator

Chapter 2. The IBM Microkernel 15

provides a ″demultiplexer (demux)″ function, which, after having
interpreted the incoming message, calls the desired function to perform
the actual work.

2.1.4 Tasks and Threads
The IBM microkernel architecture defines tasks and threads in order to
support parallel execution. This is done by separating the execution
environment (tasks) from the execution of instruction streams (threads). That
means, a task does not execute itself. Threads are the active and
computational entities. So, by saying ″task A does X″, it is meant, that ″a
thread contained within task A does X″.

2.1.4.1 Tasks
A task is a container to hold references to resources in the form of:

• A port name space

• A virtual address space

• A set of threads

All tasks are tagged with a security token, an identifier that is opaque from
the IBM microkernel′s point of view. It encodes the identity and other
security attributes of the task. This security token is included as an implicit
value in all messages sent by the task.

A new task is created based on an existing prototype task. The new task:

• Has either an empty virtual address space or one inherited from the
parent task.

• Inherits the security token from its parent task.

• Has an empty port name space.

• Contains no threads.

The new (child) task receives the following special ports, which are created
or copied at task creation:

• Task-self port

The port by which the kernel knows the new child task and allows it to be
manipulated. The child task holds a send right for this port. This port
name is also returned to the calling task.

16 OS/2 Warp (PPC)

• Bootstrap port

The port to which the child port can send a message requesting return of
any system service port it needs. The child task inherits a send right for
this port from the parent task.

• Host-self port

The port by which the child task requests information about its host. The
child task inherits a send right for this port from the parent task.

Priority

As threads are the only computational entities within a task, the priority of a
task has only an effect on containing tasks, that is the priority of a new
thread is set to match the priority of the enclosing task.

2.1.4.2 Threads
As already mentioned, threads are the basic computational, active entities in
the IBM microkernel. A thread is a lightweight entity which is inexpensive to
create and requires low overhead to operate. Its owning task bears the
burden of resource management. On a multiprocessor, it is possible for
multiple threads in a task to execute in parallel. A thread belongs to only
one task that defines its virtual address space and a port name space with
which other resources are accessed.

A thread has the following features:

• A point-of-control flow in a task or a stream-of-instruction execution.

• Access to all the elements of the containing task.

• Parallel execution with other threads, even threads within the same task.

• Minimal state for low overhead.

A thread has the following set of states:

• Machine state

It changes as the thread executes and can also be changed by another
holder of the corresponding IBM microkernel thread port. But care
should be taken to set the state of the thread because inconsistency may
occur.

• A set of thread-specific port rights

This set identifies the thread′s microkernel port, a reply port maintained
for the thread by the kernel, and ports used to send exception messages
on behalf of the thread.

Chapter 2. The IBM Microkernel 17

• Suspend count

Is nonzero if the thread is not to execute instructions.

• Resource scheduling parameters

For example, assignment to a specific processor set or scheduling policy
for a corresponding processor set.

• Thread security token

Provides a thread override to the task proxy security token.

Priority and Scheduling

A thread is scheduled for execution according to its current priority and the
scheduling policy currently set for the thread′s assigned processor set.
There are scheduling policies defined, such as:

• POLICY_TIMESHARE

• POLICY_RR (round robin)

• POLICY_FIFO (first-in, first-out)

Threads have three priorities associated with them by the system:

• A priority value that can be set by the thread to any value up to a
maximum priority.

• A maximum priority value that can be raised only through privileged
operation so that users cannot unfairly compete with other users in their
processor set.

• A scheduled priority value used to make scheduling decisions for the
thread. This value is determined on the basis of the user priority value
by the scheduling policy.

Processor Sets

As already mentioned, tasks are assigned to a specific processor set. When
a new thread is created in that task, this thread inherits the corresponding
processor set. However, a thread can be assigned a different processor set.

Traps and Exception Processing

To affect the structure of the address space or to reference any resource
other than the address space, the thread must execute a special trap
instruction. This causes the IBM microkernel to perform operations on behalf

18 OS/2 Warp (PPC)

of the thread or to send a message to an agent on behalf of the thread.
These traps manipulate resources associated with the task containing the
thread.

Scheduling Support Traps

Normally, threads are preemptively scheduled by the microkernel according
to its scheduling policies. When a thread wants to give up the processor it
can do so by issuing the thread_switch trap by specifying another thread to
run.

Another scheduling trap is the clock_sleep trap, which delays the invoking
thread until a specified time.

Identity Traps

These traps are used by the thread in order to initially obtain the port rights
for itself and its task.

Message Send and Receive Traps

The most important set of the IBM microkernel traps are those used to send
and receive messages or make and service Remote Procedure Call (RPC).

Exception processing

When an exception occurs in a thread, the thread executes in kernel context
and sends a message whose contents describe the exception to an exception
port. For any given exception, two exception ports apply:

• A thread-specific type of exception

• A task port for the specific type of exception

The type of exceptions for which the exception ports applies are, for
example:

• Arithmetic exception

• Could not access memory

• Invalid or undefined instruction or operand

• Software generated exception

After an exception, the kernel selects the thread-specific port for the specific
type of exception as the destination or the exception message (if it is
defined). Whereas a successful reply causes the thread to continue, an

Chapter 2. The IBM Microkernel 19

unsuccessful reply causes the kernel to send an exception message to the
task port for the specific exception. If neither exception message receives a
successful reply, the thread is terminated.

Not every exceptional condition that a thread encounters is handled this way.
A page-not-resident does not send a message to the exception port. Instead,
a message is sent to the external memory manager associated with the
memory page in which the faulting address lies.

Creating Kernel Threads and Tasks

For the sake of its own operation, the kernel creates kernel threads that
execute purely within kernel context to provide various support functions.
For example, page-out function, thread reclamation, and scheduler priority
computations are performed by dedicated threads, rather than being
executed in interrupt or software interrupt context. Users of the system,
including privileged ones, have no direct control over these internal threads.
To provide a task context for these threads, the kernel constructs a kernel
task to contain them.

2.1.4.3 C-Threads
The IBM microkernel provides a set of low-level, language-independent
primitives for manipulating kernel-level threads of control in support of
multithreaded programming as described in the foregoing sections.
Additionally, there is a C-Threads package, which is a run-time library that
provides user-level threading as well as a C language interface to these
facilities. The constructs provided are as follows:

• Forking and joining of threads

• Protection of critical regions with mutex variables

• Synchronization by means of condition variables

A set of C threads can execute in parallel on multiple processors within a
system. There is a one-to-one mapping of C threads to kernel level threads.

2.1.5 Virtual Memory Management
In order to describe the basic mechanisms of virtual memory management,
the following elements will be defined:

Memory object

A memory object is an abstract image of a set of ordered bytes. All data in
the system is represented by memory objects. Memory objects can be

20 OS/2 Warp (PPC)

referenced by mapping portions of the memory object into a range of virtual
addresses in the virtual address space.

Memory Manager

A memory manager is a microkernel task that maintains a set of memory
objects. For example, a file in the file system could be represented as a
memory object in order to provide memory mapped access to that file. This
memory manager may be the pager component of a file system that
maintains the abstract image of the memory object on a permanent backing
media.

Virtual address space

A virtual address space consists of a range of virtual addresses, beginning at
a minimum virtual address and extending to a maximum virtual address.
The virtual address space is divided into virtual pages.

Virtual pages are cached in physical memory. As in all virtual memory
systems, the total size of all the memory object currently being referenced
can be greater than the amount of physical memory in the system.

Creating Virtual Address Spaces

A virtual address space is created when a task is created and destroyed
when the task is destroyed. Normally the new task inherits the virtual
address space of its parent task, for example it acquires shared or copied
parts of the parent′s address space. Alternatively, a child task can be
created with an empty address space.

Allocating Virtual Memory

Allocating virtual memory can be done in two ways which results in either:

• A mapping of a portion of a memory object into the virtual address space

• A range of memory initialized with zeros (anonymous memory)

Working with Virtual Memory

There are functions provided by the kernel to copy virtual memory from one
task to a different one as well as within the own virtual address space. In
order to prevent random allocation of virtual memory within a specific region
of the virtual address space, this region might be reserved.

Chapter 2. The IBM Microkernel 21

Setting the Protection/Inheritance Attribute

Access permission for a specific virtual address region are:

• VM_PROT_NONE

• VM_PROT_READ

• VM_PROT_WRITE

• VM_PROT_EXECUTE

• Any combination thereof

Note that enforcement of protection attributes as well as combinations are
machine-dependent. This is also valid for the semantics of attributes or
combinations of attributes. For example, for some hardware platforms write
access implies read access and execute access cannot be distinguished
from read access.

Each virtual address region has a maximum and a current protection. The
current protection must be a subset of the maximum protection. The
maximum protection cannot be changed to include additional protection
accesses.

Using Virtual Address 0

Some programs fail if memory is allocated at address 0, because they
consider a memory pointer whose value is 0 to be a null pointer and not a
pointer to a valid memory byte. But some functions may allocate a region at
address 0. To prevent the kernel from doing this, the first page at address 0
should be reserved.

2.2 Elements of the IBM Microkernel Services
The microkernel services portion of the IBM microkernel system consists of
services built on the underlying microkernel. These services provide some
functions that the kernel itself depends on, as well a basic set of user-level
services for the construction of programs. The microkernel services can
serve requests from multiple operating system personality clients and are
used to construct the operating system personalities themselves.

In addition to the libraries that define the microkernel services, many
libraries exist within the microkernel services that are part of the microkernel
proper. These libraries represent the interfaces that the microkernel exports

22 OS/2 Warp (PPC)

and the support logic for the Message Interface Generator (MIG), which is
used with the IBM microkernel′s interprocess communication facilities.

A key element of the microkernel services environment is that it does not
constitute a complete operating system. Instead, the microkernel services
depend on the existence of a dominant personality, in this case OS/2 Warp
Connect (PowerPC Edition).

The IBM microkernel is also dependent on some elements of microkernel
services. There are cases in which it sends messages to personality-neutral
servers to complete internal kernel operations. For example, in resolving a
page-fault, the IBM microkernel may send a message to the default pager.
The default pager then reads in the page that the kernel needs from a hard
disk. Although the page fault is usually being resolved on behalf of a user
task, the kernel is the sender of the message.

2.2.1 Initializing the Microkernel Services
The microkernel service for initialization consists of two distinct pieces:

 1. An underlying Boot Loader (BL) that loads an image containing the
microkernel

 2. The bootstrap task

Boot Loader

The first program run when an IBM microkernel system starts is called the
Boot Loader (BL). It is loaded by the firmware of the machine from the boot
device into memory and then starts loading other programs and files into
memory as proscribed by a configuration file that also resides on the disk.
The configuration file contains the name of the microkernel to load, the name
of the initial task, the names of other programs and files to load, along with
any other information that is needed by later stages of the boot process.

In the IBM microkernel system, the initial task started by the boot loader is
called the bootstrap task. This task is the first of the microkernel services
tasks to be started.

Bootstrap Task

The bootstrap task has no device drivers built into it, and thus cannot access
the hard disk. It can however, access information that the boot loader (BL)
has already placed in memory. This information contains all that is needed
for the bootstrap task to start tasks running.

Chapter 2. The IBM Microkernel 23

Once it has started, the bootstrap task becomes a file server for the
programs that it starts. As a file server, the bootstrap task serves out the
other files that were read into memory by the Boot Loader.

The bootstrap task performs the following (in order):

 1. Starts the Root Name Server.

 2. Starts the Default Pager.

 3. Starts the Task manager.

 4. Provides File Services (which wil l be used by the Task Manager).

 5. Directs the Task Manager to start to personality neutral (PN) servers
required to bring up the dominant personality. PN servers include
Message Logger, Hardware Resource Manager (HRM), Bus Walkers, and
Device Drivers.

 6. Starts the Personality.

The bootstrap task continues to behave as a file server until it terminates.

2.2.2 Task Manager
The task manager is a microkernel service that completes the boot process
and can then be left to load programs or attach new libraries to already
running programs.

The task manager maintains a set of event/action lists. The event/action lists
describe what actions, usually loading a program, take place when a certain
event occurs. The events usually contained in the event/action lists are
name service notifications. The task manager requests that the name
service notify it when certain changes are made to the name space. When
the name service notifies the task manager that a change has occurred, the
task manager scans through the event/action lists until a match is made
against one of them. When the match is made, the indicated set of actions is
taken.

This mechanism provides for an automatic configuration of the system based
on what services are present in the system and what is needed by the
system rather than by a fixed set of scripts. By providing such a mechanism,
it becomes harder for the system to be configured incorrectly either by
attempting to use services that are not present or providing services that will
not be used.

There are five submodules in the task manager, as follows:

24 OS/2 Warp (PPC)

• Extended Link Format (ELF) object loader

The ELF loader loads other microkernel services, such as microkernel
services servers and device drivers.

• Shared Library Management

Shared libraries can be linked at load time using the shared library
management util ity program.

• Microkernel Services server management

The microkernel services server management module provides a set of
APIs to load, start, and terminate microkernel services tasks.

• Name Services

Name access service is provided to privileged system management
software for retrieving task control ports, as well as other information.

• Boot message logging

The boot message logging service provides a unified method for all
microkernel services tasks to log their errors.

2.2.3 External Memory Managers
Memory objects are managed by memory managers. Unlike some virtual
memory systems, memory managers are not part of the kernel, but are user
mode tasks. Memory managers must register with the kernel. The memory
manager and the kernel exchange send rights to two ports that are used by
the kernel and the memory manager to communicate. The kernel calls the
memory manager on one of these ports whereas the memory manager calls
the kernel on the other port. However, creation, representation, and
destruction of memory objects is a private responsibility of the memory
manager. The kernel deals only with managing the cached pages of memory
objects.

When a client wants to get access to a memory object or a portion of a
memory object, this part of the memory object has to be mapped into the
client′s virtual address space. The client does this by issuing a
corresponding vm_map call. The kernel passes this request to the memory
manager. The memory manager is notified by the kernel during the mapping
process that the kernel is preparing to cache pages for a memory object.
The memory manager declares the memory object attributes. Memory
object attributes define the options and customized characteristics of the
memory object.

Chapter 2. The IBM Microkernel 25

When the system runs out of physical pages in order to satisfy a certain
request, the kernel selects pages to be evicted from the cache to make room
for memory object pages of greater demand. These pages are returned to
the memory manager so that these pages can be removed from physical
memory. Pages, that have not been updated can be discarded without being
returned to the memory manager. Pages that have been updated are called
″dirty″ and are returned to the memory manager in order for the memory
manager to update its abstract image of the memory object. Pages can be
declared as ″precious″, in which case the pages are returned to the memory
manager whether dirty or not.

2.2.4 Default Pager
The IBM microkernel provides a default memory manager, called the default
pager, to manage temporary nonpersistent memory objects. The default
pager has a paging space (backing storage) to hold the contents of these
memory objects when the kernel needs to use physical storage for some
other purpose. Memory backed by the default pager is called anonymous
memory.

It is valid to have a memory manager that keeps its abstract memory object
image in anonymous memory and does not stage the memory object to a
backing store. In this case, the anonymous memory, which is managed by
the default pager, may be evicted to the default pager′s backing space. This
is called double paging and should be done, knowing that system resources
will be used to maintain this data.

2.2.5 Root Name Server
The name space acts as a directory (or depository) to store and locate
information about resources currently available in the system and which
should be known to other components of the system.

The resources described in the name space include:

• Configuration information

• Port addresses

• Service providers

• Directories

• Files

• Personality Dependent (PD) resources

• Personality Neutral (PN) resources

26 OS/2 Warp (PPC)

Name Space

Definition:

• Permanent: Some parts of the name space are permanent from boot to
boot unless the system configuration is modified.

• Transient: All other portions of the system are being defined as
″transient″ and are not saved and restored from boot to boot.

• Rules: With the exception of nodes attached directly to the root
(ns_root_dir) of the global name space by the system at installation time,
all name space nodes are transient unless they are specifically created
as permanent.

Structure of the Name Space

The namespace of the IBM microkernel is a graph. Each graph is a
collection of nodes. The nodes are connected by links. The entire name
space exists as a directed graph. In many respects it also has the
characteristics of a rooted tree. All name space nodes originate from a
single root.

Most tasks make use of the namespace by doing one of the following:

• Find services or resources it needs.

• Advertise services or resources it manages.

• Being a name server itself.

The name space is not managed by a single server. As an example, there
might be multiple file servers, each one managing a subset of the name
space. The name server that manages the Root Directory is called the root
name server. The collection of all name servers in a system implements the
name space graph. These name servers might have different capabilities,
that is, not all name servers implement the same set of application
programming interfaces. Each name server owns a subset of a name space
(sub-graph). Thus, the name space is ″fractured″, and these fractures are
called name borders. Note, that there are no restrictions to force a tree
structure, to preclude cycles, or to force the sub-graph to be connected.

Figure 3 on page 28 shows the structure of the root name space and its
relationship to other private name spaces. Note, that the dotted line does
not denote a link.

Chapter 2. The IBM Microkernel 27

Figure 3. Root and Private Name Space

Links

A link maps a node and a name to a node. There are two restrictions placed
on links:

• A link cannot cross name borders. The two nodes that are connected by
a link must be managed by the same name server.

• The two nodes connected by a link must exist. If the node that the link
points to is deleted, then the link is also deleted.

Nodes

Nodes are the data containers of the name space. Each node has a type, a
set of zero or more attributes and an access control list (ACL). ACLs are the
only mechanism used to protect the integrity of the name space, thus it is
important to properly protect directory nodes. Attributes are used to store
information and are pairs made up of a name and a value. The name is a
possibly empty unicode string.

Thus, the name server provides more than just a naming service. It is also
an information repository and a powerful query facility can be used to
navigate the name space based on this information.

28 OS/2 Warp (PPC)

There are three types of nodes:

• Directory nodes

Nodes that contain outgoing links to other nodes. However, directory
nodes can be empty, that is, they have no outgoing links. Directory
nodes can be used in much the same way that they are used in a file
system. Related items are grouped together and organized within the
name space. For example, different devices can be found under the
devices directory. There is a special directory node called the root
directory node (ns_root_dir) which has the following characteristics:

− A handle to this node is inserted on all tasks.

− It cannot be deleted.

− It is created by the root name server at boot time.

− Its ACLs are initialized in such a way that only trusted tasks can add
or delete outgoing links.

• Alias nodes

Alias nodes are used to reshape the name space. They provide a way to
jump from one portion of the name space to another portion of the name
space. To accomplish this, an alias node contains a reference to a node
and a path. The node that the alias refers to must exist. When an alias
is found during the name (for example path) resolution process, then the
resolution process jumps to the node referenced by the alias and
resolves the path stored in the alias before continuing with the resolution
of the rest of the original path.

• Leaf nodes

A leaf node does not have any outgoing links, that is it is the end of a
name space path.

A leaf node may or may not contain a send right, which can be given to a
requesting task by the name server. If there is no send right, the leaf is
just a placeholder for arbitrary information. If the leaf contains a send
right, this points to a service provider associated with this leaf. The send
right to this service provider allows the requesting task to communicate
with the object or resource represented by this leaf. On the other hand,
this service provider might also be another name server. This is the
mechanism used to allow the name space to span multiple name servers
(see the dotted line in Figure 3 on page 28).

The type of a node is determined at creation time and cannot be changed
later on. Directories and aliases have the node type

Chapter 2. The IBM Microkernel 29

NS_NODE_TYPE_DIRECTORY and NS_NODE_TYPE_ALIAS, respectively.
Leafs, on the other hand, can have the generic type NS_NODE_TYPE_LEAF,
or they can have a user-defined type.

Each node has a reference count. The reference count is incremented
whenever a new reference to the node is established. When the reference
count drops to zero, the node is deleted.

Anonymous Nodes

A node which has no incoming links is called an anonymous node, that is, it
cannot be reached from the root directory. A task can create such an
anonymous node in order to build a private name space, which is
administered by the root name server. From such node an anonymous
subgraph can be created, which is not part of the global name space and is
therefore not known publicly. The anonymous directory can be shared by
other tasks by having the task that created it provide a send right to the
anonymous directory port to other tasks. Anonymous nodes and graphs can
be used by peer processes as a means of interprocess communication.

Paths and Name Resolution

The concatenation of one or more link names is called a path. Paths are
used to traverse the name space. In order to get a node handle, the
requesting task has to provide:

• A handle to a starting node

• A path

Given a starting node and a path, a simple, recursive algorithm returns the
last node as a result of this name resolution algorithm.

Accessing the Name Space

Service providers need to modify the name space by means of an API in
order to advertise services or to update system information. Therefore, to
accomplish this task, a rich set of functions is provided by the root name
server (for example, creating nodes/links as well as performing path
resolution).

30 OS/2 Warp (PPC)

Chapter 3. System Services

The system services play a unique role in the OS/2 Warp Connect (PowerPC
Edition) environment. They are not a part of the microkernel, nor are they
part of the OS/2 Server. The system services are effectively neutral services
that are utilized by the other components of the operating system. The
advantage of this architecture means that the OS/2 server could be replaced,
or additional servers could be added to the system, without having to recode
the information that is part of the system services.

3.1 Device Support
One of the most important components of OS/2 Warp Connect (PowerPC
Edition) is the device services. The device services, through the use of
device drivers, provide access to the hardware for the other components of
the OS/2 Warp Connect (PowerPC Edition) operating system.

To keep the microkernel small and to improve modularity and real time
response, the device services can be implemented as user-level functions.
This means that the device drivers, which in other operating systems are
logically part of the operating system kernel, are application programs. They
have privileges that other application programs do not have, such as having
access to the physical device hardware, but they execute as standard tasks.

One of the advantages in having the device drivers in the user level of the
operating system, is that it is possible to use conventional application
development techniques to develop and test them. This aids in the reliability
of the system since the failure of a single device driver does not imply a total
failure, as is usually the case when device drivers reside in the kernel.

In the first release of OS/2 Warp Connect (PowerPC Edition), several of the
system device drivers have been implemented to run wholly within the
kernel. The reason for this has been to increase the performance of those
device drivers over a user level implementation.

 Copyright IBM Corp. 1995 31

A limited set of device drivers have been supplied with the first release of
OS/2 Warp Connect (PowerPC Edition). Support is provided only for devices
originally supplied with IBM Power Personal Systems Series machines. The
reason behind the limited availability of device drivers is that the current
device driver architecture is due to be replaced by a proposed layered
device driver architecture in a future release of the OS/2 Warp Connect
(PowerPC Edition) system.

The device drivers supplied with this release of OS/2 Warp Connect
(PowerPC Edition) include:

• Parallel port
• Serial port
• Diskette drive
• Console - This driver is actually a set of different drivers, including

drivers for keyboard, mouse and the display adapter.
• Token-ring
• Ethernet
• PCMCIA Ethernet
• PCMCIA Token-ring
• SCSI
• IDE
• Audio

3.2 Event and Window Services
Event and Window Services (EWS) is the OS/2 Warp Connect (PowerPC
Edition) mechanism for sharing the console device among applications. EWS
handles screen groups, sessions and events.

A session is a collection of one or more tasks (or processes in OS/2). A
session owns an input queue for keyboard and mouse input, and it owns a
video buffer.

A session may have child sessions. Sessions maintain the state necessary
to share console resources. A session may be active or inactive. Only
active sessions can receive input events and be switched to the foreground.

A screen group is a session which controls the state of a physical video
device, keyboard and mouse (or any other locator).

The events handled by EWS are essentially keyboard, mouse and pen events.

32 OS/2 Warp (PPC)

3.2.1 Screen Group and Session Management
The EWS is called to create and destroy sessions and screen groups.

The EWS maintains the session states and session interrelationships. The
latter being parent/child, independent/dependent, bound/unbound,
foreground/background and selectable/unselectable.

The EWS provides support for exclusive sessions such as Hard Error and
Popups.

The EWS provides for switching screen groups, by notifying the screen
groups being switched in an out of the foreground.

The EWS notifies screen group owners, session owners and session
watchers of session management events. The EWS allows programs to
register as session watchers. As such, they will be notified about session
management events. An example of a session watcher, is the OS/2 tasklist.

3.2.1.1 Session Manager
The Session Manager component is responsible for:

 1. Maintaining the list of active sessions

 2. Maintaining the z order of screen groups
The z-order determines the layering of windows on the screen.

 3. Notifying session watchers (tasklist) about session changes (creation,
deletion, switch and title change)

 4. Providing the session management API

The session manager receives all its requests as microkernel interprocess
communication messages generated from the session management API of
OS/2 Warp Connect (PowerPC Edition). The session manager deals with
three types of requests:

 1. Popup display requests

 2. Hard error display requests

 3. All other requests

The session manager maintains internal queues to hold the requests. Popup
and Hard error requests are served before the session switching requests.

Chapter 3. System Services 33

3.2.1.2 Sessions
A session has a session owner, it has a video resource and it has an input
queue for receiving keyboard and locator (mouse) input.

Session owners in OS/2 Warp Connect (PowerPC Edition) are the OS/2
Server and the Multiple Virtual Machines component. A session owner
receives a notification when a session terminates. The session owner is
responsible for maintaining a list of the processes belonging to the session,
and for terminating them.

Sessions may be related to other sessions in parent/child relationships.
Children may be bound to their parents. Selecting a session with a bound
child, results in the child session being brought to the foreground instead of
the parent.

3.2.1.3 Shutdown Services
On a normal shutdown, EWS is called twice by the OS/2 Server. The first
time it is called, EWS is requested to send a message to all screen groups
and sessions, that the system is about to shutdown. This allows the involved
session owners and applications to terminate normally. They may also
cancel the shutdown. If none of the session owners request cancellation of
the shutdown, the OS/2 Server will call event and window services a second
time, and this time EWS will notify the screen groups and sessions that the
shutdown is imminent.

3.2.2 Event Services
The primary responsibility of the event services component of event and
window services is to facilitate high-level sharing of console input. It runs as
a thread of the event and window services task, reading messages posted by
the micokernel to the event and window services input port. The messages
received, are basically keyboard and mouse messages. However, other
sources may also send messages to the input port. An example could be a
pen server sending pen-created input formatted as keyboard messages, so
the event services component would not know the true source of the
messages.

The primary job of the event services component is to translate the input
events (keyboard, mouse, pen, etc.) into a common event packet, maintain
shift state and pointer position, and route the message to the current input
queue.

34 OS/2 Warp (PPC)

In OS/2 Warp (Intel), this was done in the keyboard and mouse device drivers
and in the PMWIN.DLL. The event services component of event and window
services provides a common location to place all input handling.

3.2.2.1 Input Port Messages
Five types of messages are allowed on the input port of the event services.
These messages can come from the console device driver, from another
device driver simulating a console device driver, or from a program
simulating keyboard or mouse input.

The five message types allowed, are:

 1. Keyboard scancode
This is the basic keyboard event as received from the console device
driver. It consists of a packet containing a timestamp and a single byte
of type 1 (AT enhanced) scancode.

 2. Locator record
This is the basic mouse event as received from the console device
driver. It consists of a packet containing a timestamp, mouse button
action, and position information.

 3. Control
The control event message is used by device drivers to send status
change requests to event services. A control event message indicates a
state change in the physical device, and requires that event services
update its local state.

 4. Multi-event
The multi-event message is designed to allow a programmable interface
to all of the above mentioned events. In addition, the multi-event allows
input of unicode characters, virtual keys and PM scan codes.

 5. Notification
Notification events are sent to event services from other threads within
event and window services. These are not meaningful if sent from any
other place. Notifications such as session termination are sent this way.

Logical Devices:

Input events can come from either real devices or simulated devices, such as
a pen device, or the special needs component of event and window services
(see 3.2.2.4, “Keyboard Special Needs” on page 39). When the data comes
from a simulated device, it is necessary to understand how the state of the
real device affects the simulated events. Event services define the logical
devices as a means of specifying these relationships. Each session has

Chapter 3. System Services 35

three logical console devices defined. These can be used to maintain
separate settings, such as shift, for the various logical devices. This is
mostly useful for a program wishing to simulate keyboard and mouse events
without changing the state of the real shift and button states.

The logical devices are:

• Device 0
This defines the real device. Any changes made to this device are
affected by the state of the real device.

• Device 1
This defines a long term logical device. Users of this device should be
careful to complete a set of actions. For instance, any keys which are
pressed should be released.

• Device 2
This defines a transient logical device. Users of this device should
include a EV_RESET control at the start of each record, which sets the
state to match the physical device and a known shift state.

Multi Event Input:

Events from real keyboard and locator devices tend to consist of a single
action. Simulated events are often more complicated, and consist of a series
of events which must be synchronized.

For instance the simulated event may consist of a mouse move, a button
down and a series of keystrokes.

Multi-events consist of a header followed by a series of two byte values
which are interpreted sequentially. Some control values (such as the scan
code input) represent a single event. Other control values (such as unicode
character) contain a length where many following values are data values.

The following types of events can be sent using the multi-event interface:

• Unicode Characters
Unicode characters are sent with a control value which gives the count of
characters, followed by a string of unicode characters. The characters
are translated to complete input event packets and sent to the
application as if they where entered from the keyboard.

• Codepage Characters
Characters in the current keyboard codepage can be sent with a control
value containing a count, followed by a string of characters. Each
character is contained in a two byte field. The characters are translated

36 OS/2 Warp (PPC)

to complete input event packets and sent to the application as if they
where entered from the keyboard.

• Virtual keys and Deadkeys
Virtual keys and Deadkeys are sent using the two byte VK_ or DK_ value
as a single event. This sends a make/break of the key and has no
permanent effect on the shift state. The resulting virtual or deadkey is
translated and sent to the application as if entered from the keyboard.

• PM Scancodes
PM translated scan codes are sent by OR-ing the scancode with the
desired make/break code. It is sent as a single event value. Four
make/break codes are defined:
EV_SCAN, EV_SCANDOWN, EV_SCANUP and EV_REPEAT.
The scancode is sent through keyboard translation and to the application
as if entered from the keyboard.

• Type 1 Scancodes
These are the native scancodes of the PC/AT keyboard, with additional
support for the enhanced keyboard. This is the scancode sent by the
keyboard. It consists of a single byte, where the highorder bit is the
break indicator. A scancode of 0XE0 indicates that the next byte is an
extended scancode.
The scancode is sent through keyboard translation and to the application
as if entered from the keyboard.

• Locator Buttons
The buttons are normally associated with the mouse, although devices
like pen, tablet and trackball are also supported. Button events are sent
as a single event value, indicating the make/break status and the number
of the relevant button. Event services support 32 buttons.
The event is sent to the application as a mouse event.

• Locator Position
position events are sent as a control value followed by a set of
dimensions. A mouse would have two dimensions, but other devices
might have more. The position can be either relative or absolute. The
absolute dimension must be in the coordinate space of the locator and is
translated to video coordinates by the event services.
Several event types are defined:
EV_RELMOVE, EV_ABSMOVE, EV_RELPOS and EV_ABSPOS. These all
require the number of dimensions to be specified. Two dimension
version of the above mentioned event types are also defined. This is for
example EV_RELMOVEXY.

Chapter 3. System Services 37

These events are translated and sent to the application as mouse events.
If the mouse is currently being drawn on the display, it is redrawn in the
current position.

• Control Events
Control events come with or without data values. Control events without
data consist of a single control value. Control events with data consist of
a control value containing a length, followed by some data values.

3.2.2.2 Keyboard Translation
Keyboard translation is done using a set of global scancode translation
tables and by calling the Universal Language Support (USL) keyboard
functions. Scancodes arrive as either type 1 scancodes or PM scancodes.
Type 1 scancodes are translated to PM scancodes with a simple translation
table. This logic also detects repeat keys. The result of this step is a PM
scancode with an indicator of make/break/repeat.

The ULS keyboard function is called to update the shift state, and the
resulting scancode and shift state are used to generate the BIOS scancode.
If the keyboard LED state is changed, the keyboard device driver is called to
do the update.

The ULS keyboard function is called to generate the unicode character and
the virtual key. The unicode character is used to construct the codepage
character.

When the input is a character, the ULS keyboard untranslate function is used
to translate the character to a scancode.

Keyboard layouts are defined by the ULS component, and are global to all
session owners (OS/2 Server and Multiple Virtual Machines Server) in OS/2
Warp Connect (PowerPC Edition). They may be changed at any time, and
applications may simultaneously be using different keyboard layouts. These
keyboard layouts are user definable and created using the keyboard
compiler (makekb).

Hotkey Processing:

After a key is translated, and before it is routed to the current input queue, a
check is made to see if it is a hotkey. This can be done only after shift
translation is done. Then keys are matched against the hotkey table within
event and window services. If the key is a hotkey, the associated port is
notified.

38 OS/2 Warp (PPC)

Hotkeys may be global (for instance CTL-ALT-DELETE) or session (for
instance CTL-BREAK). Event and window services support an API call to set
hotkeys.

3.2.2.3 Locator Conversion And Pointer Painting
The coordinates of the locator must be converted to absolute coordinates in
the coordinate space of the current video mode.

The locator coordinate mapping logic can be replaced with a user function.
This function is an entrypoint in a shared library, and is called with the
current locator position, coordinate mapping information and the locator
event.

In OS/2 Warp (Intel), the mouse pointer is painted as part of the mouse
interrupt. In OS/2 Warp Connect (PowerPC Edition), the locator pointer is
painted when the event is processed by event services. The actual painting
is done by sending a message to the session owner, and the session
owner ′s paint function (for instance PM if the session owner is the OS/2
Server) will do the actual painting.

A paint request is only sent when it is necessary. The decision of when to
paint is based on the time since the last painting and distance moved.

Event and window services allow each session to specify an interest
rectangle. This rectangle is set up by the session owner, and is used to
allow suppression of certain locator events, either inside or outside of the
rectangle.

3.2.2.4 Keyboard Special Needs
Some people have difficulties using the traditional keyboard and mouse so
that they need special accomodations. The event and window services
keyboard special needs component provides these accomodations.

This support is modeled closely on the industry standard AcessDOS from the
Trace Center at the University of Wisconsin. The functional names used in
this section are the names used in AccessDOS.

The following functions are supported:

• StickyKeys
Allows the user to press each key of a multiple key operation separately.

• RepeatKeys
Sets the keyboard repeat rate to a slow rate, or turns it off all together.

Chapter 3. System Services 39

• SlowKeys
Sets the sensitivity of the keyboard by not accepting a key until it is held
down for a certain period of time.

• BounceKeys
Prevents a key which is quickly repressed from being seen as a double
press on the key.

• ToggleKeys
Use a sound to indicate that a toggle key has been pressed.

• MouseKeys
Use the keys on the numeric keypad to simulate a mouse.

• SerialKeys
Use an external device attached to the serial port (or other character
device) to act as an additional keyboard.

3.3 File Services
The file services provide file system support to the rest of the OS/2 Warp
Connect (PowerPC Edition) operating system. The file services are based on
a file services framework, which provides the model on which the
components of the operating system can access the file services.

The File Services framework consists of both File Services Client interface
and the File Services Server. A client is an application running as a user
task together with the File Services-related libraries linked to the application.
The OS/2 Server is an example of a File Services Client.

The File Services Server task includes the Logical File System, the File
Server Pager, and a Physical File System and runs in user space. In this
context, the term client/server does not mean that a machine-to-machine
relationship exists, instead it is derived from the message passing
architecture of the MK. Any application task that interfaces with the File
Services Server is considered to be a File Services Client.

40 OS/2 Warp (PPC)

Figure 4. File Services Framework Overview

3.3.1 File Service Client
The File Services Client interfaces part of the File Services framework is the
task which originates the file system request. An application submits a file
system request (using native OS/2 calls), which gets translated into a file
system server request. The LIBFS library, which is part of the File Services
framework, then sends this request to the File Services Server.

Chapter 3. System Services 41

3.3.2 File Services Server
The File Services Server part of the File Services framework includes the
Logical File System, the File Services Pager and the Physical File System.
This framework is designed to allow many different Physical File Systems
(from within IBM or from other vendors) to be plugged in with minimal effort.
In the first release FAT, HPFS and a CD-ROM Physical File System are
supported. IBM plans to encourage other vendors to port their Physical File
Systems to this framework.

3.3.2.1 Logical File System
The Logical File System provides path resolution, notifications, attributes,
tokens support and common resource management.

• Path resolution resolves a path to the correct File Services entity
(directory or file).

• Notifications allow a client to request a message when a particular type
of change is made to the userdata or metadata maintained by the File
Services.

• Attributes are additionally named and typed data to be attached to a File
Services entity.

• Tokens allow client applications to explicitly map files and control access
while mapping.

3.3.2.2 File Services Pager
The File Services Pager handles all paging activity on behalf of its File
Services Server. This includes receiving page requests and page returns
from the IBM microkernel, and handling all I/O to the device drivers. The
File Services Pager provides a buffer manager abstraction to the Physical
File System that is much simpler than the IBM microkernel′s external
memory manager interface (EMMI). Because the File Services Pager does
all I/O for the File Services Server, it also shields the Physical File System
from knowledge of the device interface, and the thread and port interfaces.
Using the FS pager allows for a global shared cache that is much more
dynamic than traditional file system caching mechanisms.

3.3.2.3 Physical File System
A Physical File System manages the on-disk storage, indexing, mounting and
recovery. A Physical File System is a part of the File Services framework.
Instead, a Physical File System is the service provided to the File Services
framework.

42 OS/2 Warp (PPC)

A Physical File System may exploit the IBM microkernel global cache
mechanism, if so the Physical File System must also use the File Services
Pager′s interface for buffer management instead of using its own private
pinned buffer cache. The Physical File System has the option of performing
the device I/O. This is intended for those special cases where the device
does not fit in the conventional storage system architecture.

The only differences between different Physical File Systems that can be
seen by an application are performance, degree of data integrity, and any
function not supported by a particular Physical File System.

3.3.3 Thread and Port Model
The components of the File Services are executed on a thread and port
model that is provided by the File Services framework. Ports are used in the
communication between the File Services Server, the File Services Client,
the device drivers and the microkernel. Threads are used to multi-thread the
activity of the File Services Server.

3.3.4 File Services Pager
The File Services Pager is one of the external pagers for OS/2 Warp Connect
(PowerPC Edition). It is the only component in the File Services Server that
is communicating with the hardware through the Device Services The File
Services Pager consists of components to control the usage of memory, to
handle page-in and page-out requests and to interface with the other parts of
the File Services Server

The File Services Pager and its related components have the following key
responsibilities:

• Handling of all paging requests returns from the microkernel for the
memory objects that it owns.

• Handling of all input/output required to process a page-in or page-out
request for the memory objects that it owns.

• Support mapping of memory objects into the address space of the File
Services Server and the address space of the File Services Client.

Chapter 3. System Services 43

3.3.5 Physical File System (PFS)
The File Services Framework is designed to allow many different Physical
File Systems to be plugged in with minimal effort. The Physical File System
is a service provider to the File Services Framework.

Each Physical File System must include a set of Physical File System utilities
to support CHKDSK, FORMAT, RECOVER and SYS.

If the Physical File System contains files needed to boot the system, it will
need to have a Boot-PFS included.

Physical File Systems included in OS/2 Warp Connect (PowerPC Edition) are:
FAT, HPFS and CD-ROM.

3.3.5.1 Physical File System Interfaces
The Physical File System attaches to the framework as part of the File
Services Server task. The Physical File System must interface with the
following three major system components:

• The Logical File System part of the File Services Server

The Logical File System uses the Virtual File System++ interface to
communicate with the Physical File System. The original Virtual File
System interface was introduced by Sun Microsystems to make it
possible to implement different file systems within one UNIX kernel. This
interface, or variants of it, appear in most UNIX kernels today. The Open
Software Foundation (OSF) made some enhancements to this interface to
support their DCE Distributed File System. The OSF interface is called
Virtual File System+. The Virtual File System+ interface is defined in
an OSF document titled ″DCE DFS VFS+ Interface Specification″ from
Transarc Corp.. Vir tual Fi le System++ (VFS++) is an extension of the
Virtual File System+ (VFS+) interface. Currently, these extensions are
primarily associated with additional operations to support Unicode and
OS/2 Warp Connect (PowerPC Edition) user-defined attributes.

The Physical File System uses the vnode pool that is provided by the
Logical File System and jointly maintained by the Logical File System and
the Physical File System.

• The File Services Pager or external memory manager

The File Services Pager handles all paging and input/output for the
Physical File System, shielding the Physical File System from the more
complex interfaces of the microkernel and the device drivers and also
provides caching. The microkernel includes threads, ports, and
memory-object management. The Physical File System has the option of

44 OS/2 Warp (PPC)

making use of the name cache facility, also provided in the Physical File
System library.

• The microkernel interfaces

The interfaces to the microkernel are used to allocate memory objects.

All length and offset parameters are 32 bit in this release of the OS/2
Warp (PowerPC Edition). Until the microkernel provides a 64 bit memory
object, the File Services will use 32 bit memory objects. This places a
restriction on OS/2 Warp Connect (PowerPC Edition) allowing the
maximum file size of 32 bits. When the microkernel provides a 64 bit
memory object, the File Services will then be changed to use the 64 bit
memory object, increasing the maximum file size to 64 bits.

3.3.5.2 File System Utilities
The utilities described here are those that require knowledge of the Physical
File System layout.

• CHKDSK

CHKDSK analyzes a file system or volume for layout integrity and
produces a disk status report.

• FORMAT

FORMAT prepares the specified media with a file system layout. After
FORMAT has completed, the specified file system may use the media for
normal read/write activity.

• RECOVER

RECOVER recovers portions of a file from a disk that has defective
sectors. RECOVER works with single and multiple files from the same
volume.

• SYS

SYS adds files to a specified volume to enable booting.

• DISKCOMP

DISKCOMP compares the contents of the diskette in the source drive to
the contents of the diskette in the target drive.

• DISKCOPY

DISKCOPY copies the contents of the diskette in the source drive to the
diskette in the target drive. If necessary, the target drive diskette is
formatted during the copy.

Chapter 3. System Services 45

In addition to the listed functions, FDISK also runs from the Utility File
Services Framework. DISKCOMP and DISKCOPY only support FAT. FDISK
does not require any knowledge of the Physical File System layout and
therefore only one FDISK is required. All other utilities are part of the OS/2
personality.

Utility File Services (UFS):

To support the CHKDSK, FORMAT, RECOVER and SYS utilities OS/2 Warp
Connect (PowerPC Edition) provides the Utility File Services. The Utility File
Services is part of File Services and functions in a similar manner as the File
Services The OS/2 personality is responsible for the front-end function to
each of the utilities supported by the Utility File Services. In addition the
front-end calls the specific utility entry in the Utility File Services which sends
the necessary parameters. The Utility File Services provides a set of entry
points that the client uses to access the functionality of the utilities.

The Utility File Services are divided into three sections: the Utility File
Services client library (libufs), the Logical Utility File Services (LUFS), and the
Physical Utility File Systems. The libufs exports the UFS_ APIs to the client.
The LUFS contain a routing mechanism used to dispatch the utility call to the
proper Physical File System implementation. The Physical Utility File
Services contain the worker routines which understand the Physical File
System′s on-disk structure. The Physical Utility File Services communicate
with the Device Drivers and the microkernel to perform its duties.

During the execution of these utilities it is necessary for the Physical Utility
File Services and the front-end utility code to communicate with each other.
This communication is to provide status and obtain additional user input.

To support this communication, the front-end utility code will establish a port
which will be used to receive messages. This port is passed to the Physical
Utility File Services as one of the API parameters. The Physical Utility File
Services will respond to the front-end utility code passing its message port.
A two-way communication is now established.

3.3.5.3 FAT, HPFS and CD-ROM Physical File Systems
The implementation of the FAT and the HPFS Physical File System is based
on the standard DOS and/or OS/2 file system layout including OS/2 extended
attributes. The design takes into account compatibility with standard FAT
and OS/2 functionality.

The CD-ROM Physical File System is the link between the data on the
CD-ROM drive itself and the File Services Logical File System layer. It

46 OS/2 Warp (PPC)

supports regular (ISO 9660) CD-ROMs at this time. OS/2 Warp Connect
(PowerPC Edition) also supports booting from CD-ROM on hardware where
the BIOS supports this.

3.3.6 Volume Manager
The intent of the Volume Manager is to encapsulate the details associated
with the identification and accessing of the different storage volumes
available to the system. It simplifies the requirements on the File Services
Server by isolating it from variations in partition schemes and by providing a
repository for pertinent partition/volume information.

It additionally can serve as a centralized component for general volume
management function, ranging from the mundane task of obtaining the data
associated with the separate volumes to more sophisticated volume
management features such as volume spanning, striping, mirroring, etc.

The first implementation of the Logical Volume Manager is called Basic
Volume Manager (BVM) and is implemented to meet the initial requirements,
with consideration given to future expansion.

The functions that are provided by the Basic Volume Manager are the
following:

• Upon invocation at IPL, the Basic Volume Manager spawns the volmgr
server and inserts the appropriate node under the servers branch of the
root name server. Subsequent invocations will fail when the presence of
the volmgr node is detected.

• The Basic Volume Manager creates and maintains the volumes subtree
under the root name server

• The Basic Volume Manager creates a logical device instance for all valid
and recognized partitions (volumes).

• The Basic Volume Manager provides an interface that allows external
parties to query and/or notify the Basic Volume Manager of changes in
the status of any volume subtree entries, and it updates those entries
appropriately.

• The Basic Volume Manager monitors the root name server devices
subtree and the logical device instances created for the tracked volumes
and performs the appropriate updates on the root name server volumes
subtree as devices/partitions/volumes are changed.

Chapter 3. System Services 47

3.4 Pipe Services
The pipe server is a personality neutral server that provides OS/2 Warp
Connect (PowerPC Edition) applications with the abstractions required for
interprocess communication through the use of pipes. The IBM
microkernel ′s message passing architecture through one way message
passing and Remote Procedure Call (RPC), provides the basis for the pipe
server, with some additional capabilities provided to the pipe server clients,
for example, named communications channels, reading the pipe data in a
user specified format, queueing up for a pipe till it becomes available for
use, remote pipe support, among others.

The purpose of the pipe server is to provide a basic set of interfaces for
creating and using pipes, without attempting to be specific to any particular
operating system′s implementation of pipes. The API set is therefore
generic, and any further specific functionality required by OS/2 Warp Connect
(PowerPC Edition) will have to be implemented in an emulation library. The
OS/2 Warp Connect (PowerPC Edition) emulation library provides the OS/2
pipe APIs with specific functionality such as:

• Peeking into a pipe to look at the data in it, without removing the data
from it.

• Associating a semaphore with a pipe, to synchronize read and write
operations on a pipe.

Pipe Server and the Name Space

Upon initialization, the pipe server will register itself with the root name
server which will provide a service port, that can be used by any client that
needs to communicate with the pipe server.

When an application wants to create a pipe, the pipe server registers this
pipe in the root name server under the pipe server′s directory on behalf of
the requesting application. Thus, the name space tree regarding pipes is
created and controlled by the pipe server. The name space for the pipes
consists of the pipe tree which has an entry for each named pipe in the
system.

As pipes can also be used as a means of communications between remote
machines, the pipe server will also register remote pipe names under the
name space for the corresponding redirectors (like IBM LAN, Novell). This
allows the pipe server to determine which redirector to request services
from, for an opening of a specific pipe on a remote server. In order to keep

48 OS/2 Warp (PPC)

an updated list of network redirectors, the pipe server requests the root
name server for notifications about changes to the tree of redirectors in the
name space.

Chapter 3. System Services 49

50 OS/2 Warp (PPC)

Chapter 4. OS/2 Functions

This chapter describes the basic OS/2 functions known from OS/2 Warp
(Intel). They are 4.1, “OS/2 Server,” 4.2, “The MVM Environment” on
page 72, 4.3, “Graphics Subsystem” on page 87, and 4.5, “Printing Services”
on page 119. There is also a section describing the systems management
functions of OS/2 Warp Connect (PowerPC Edition), 4.6, “System
Management.” on page 122.

4.1 OS/2 Server
The OS2 Server is designed to provide the OS/2 Warp 3.0 API (the API calls
with prefix DOS) on behalf of OS/2 Warp Connect (PowerPC Edition).

It is assumed that the reader is familiar with the basic functionality of the
OS/2 Warp (Intel) kernel, also called the OS/2 Control Program. For more
information about the OS/2 Control Program, see OS/2 Version 2.0. Volume 1:
Control Program, GG24-3730 .

4.1.1 OS/2 Server Architecture
The OS/2 Server architecture is based on a client/server model that makes
use of microkernel interprocess communication (IPC). The client side of the
model is OS/2 Warp 3.0 applications. The applications communicate through
the API to a set of DLLs, which are responsible for providing the APIs, either
directly or by requesting service from the server side of the model. Figure 5
on page 52 depicts the base API calls implementation.

 Copyright IBM Corp. 1995 51

Figure 5. Base API Calls Implementation

4.1.1.1 Client Side
This section looks at the general aspects relating to the client side of the
client/server model mentioned earlier. When we describe the different
components of the OS/2 Server in more detail, we see that there might be
client side issues to be discussed.

The client side is a collection of DLLs and libraries, bound to OS/2 user
processes. The DLLs are as follows:

• DOSCALLS.DLL

This DLL contains the most commonly used API calls with prefix DOS.

• QUECALLS.DLL

The entry points for the Queue related API calls are found in this DLL.

52 OS/2 Warp (PPC)

• LIBMK.DLL

This DLL contains library routines for the microkernel system calls.

• LIBCXPG.DLL and LIBCMXPG.DLL

These libraries contain the common ANSI C runtime routines. The
system calls in LIBMK.DLL are used to implement some of the functions
in LIBCXPG.DLL and LIBCMXPG.DLL.

• FSCALLS.DLL

This library contains the API calls to the file services in OS/2 Warp
Connect (PowerPC Edition), implemented as a shared service.

The base API calls to the OS/2 Server are resolved by the loader into
entrypoints in the DLLs on the client side.

Some of the API calls are handled entirely within the client side DLL, while
other calls result in messages being sent to the microkernel. The majority of
calls are made as remote procedure calls to components of the OS/2 Server.

4.1.1.2 Server Side
This section looks at the general aspects relating to the server side of the
client/server model mentioned earlier.

The OS/2 Server consists of a single multithreaded task (task is the
microkernel term equivalent of an OS/2 process). For performance reasons,
the OS/2 Server is multithreaded.

The following are the main threads:

• One initial thread

Which performs the initialization and spawns other threads.

• Multiple message threads

These threads read client requests, in the form of IPC messages from a
microkernel port set. When finished with a request, a reply is sent back
to the request originator.

• One exception thread

Which reads exceptions raised by the microkernel.

• Multiple pager threads

Which handle page faults.

• One semaphore timeout thread

Chapter 4. OS/2 Functions 53

Which implements semaphore timeout functionality.

• One timer timeout thread

Which implements timer timeout functionality.

• One control port read message thread

Used to spawn other tasks from external servers.

Figure 6. Main Interfaces of the OS/2 Server

Figure 6 shows the microkernel ports used by the OS/2 Server in order to
interface with other components of OS/2 Warp Connect (PowerPC Edition).

2.1.3, “Inter Process Communication (IPC)” on page 10 describes the
interprocess communication supported by the microkernel and used by the
components of OS/2 Warp Connect (PowerPC Edition). Whenever a task (or
OS/2 process) or thread is created, it is associated with a microkernel port.
These ports are not depicted in the figure.

54 OS/2 Warp (PPC)

• Control Port

The OS/2 Server receives messages on this port from other servers in
the system wanting to run OS/2 programs.

• Server Port Set

The OS/2 Server has read rights to this port set, and uses it to read
requests from user processes.

• External Server Ports

Used by the OS/2 Server to send messages to external servers, such as
name services, or File Services.

• Device Control Port

Privileged microkernel port used to access devices.

• Timeout Ports

The OS/2 Server receives messages on these ports from the microkernel,
when requested timers are expired.

• Host Ports

These ports are used to inquire and set the system clock, and to alter
scheduling policies on behalf of threads.

• Exception Port Set

A port set where the OS/2 Server receives exception messages from the
microkernel on behalf of any user thread.

4.1.2 Configuration
The OS/2 Warp Connect (PowerPC Edition) environment defines a system
name space, which contains persistent object information for all the OS/2
Warp Connect (PowerPC Edition) environment including configuration
information for the OS/2 Server. In OS/2 Warp (Intel), configuration
information is found in the CONFIG.SYS file. No API is present in OS/2 Warp
(Intel), with the purpose of updating the CONFIG.SYS file. All updates are
made directly to the CONFIG.SYS file. This is common practice, when
installing application programs. It makes the boot process of OS/2 Warp
(Intel) vulnerable, because a successful boot is dependent on the contents of
CONFIG.SYS.

The CONFIG.SYS file still needs to be maintained in OS/2 Warp Connect
(PowerPC Edition) for compatibility with applications that use the file directly.
OS/2 Warp Connect (PowerPC Edition) however, only uses the following
statements during the boot process: SET, RUN and RUNSERVER.

Chapter 4. OS/2 Functions 55

The SET and RUN statements, are the ones we know from OS/2 Warp (Intel),
while RUNSERVER is new in OS/2 Warp Connect (PowerPC Edition).
RUNSERVER starts only privileged services. All RUN statements will take
place after all the RUNSERVER statements.

The RUNSERVER command takes the following parameters:

RUNSERVER=<program>
{-arg ″arguments″}
{-lookfor <name space entry>}
{-timeout <seconds>}

The RUNSERVER statement synchronizes the startup of a server program
based on the parameters provided. By default the RUNSERVER will wait until
the program terminates. If the option -lookfor is specified with a name, the
RUNSERVER will wait until the name has been created in the system name
space. If some maximum time has been specified with the -timeout option,
the RUNSERVER will wait this maximum amount of time before returning. If
both -lookfor and -timeout are given, the RUNSERVER will return as soon as
one of the options is satisfied, or a completion notification is received (the
program has terminated).

The following RUNSERVER statement shows how the event and window
services may be started:

RUNSERVER=C:\os2\ews.exe -LOOKFOR servers\SessionClient -TIMEOUT 20

4.1.3 Components Of The OS/2 Server
This section looks at the different components of the OS/2 Server. We start
with the description of handle management, because it is common to many
of the components we describe later in the section.

4.1.3.1 Handle Management
The concept of a handle is well known from OS/2 Warp (Intel). After an initial
API call, giving the name of a requested resource, when successful, OS/2
returns an entity known as a handle. All subsequent API calls referring to
the mentioned resource, must use the handle to identify the resource to
OS/2.

Handle management must manage two types of handles. The handles on the
client side in DOSCALLS.LIB and the handles on the OS/2 Server side.

Figure 7 on page 57 shows two user applications (represented by PTDA 1
and PTDA 2) and their involvement with the handle management.

56 OS/2 Warp (PPC)

Figure 7. Handle Management Examples

• Client side handle management

The handle management on the client side maps the OS/2 handle to a
microkernel port and a handle type. The OS/2 handle is actually an
index into a table. There is one handle table per process, and handles
can be inherited by child processes. The handle type is used to identify
the component serving the object referenced by the handle. This
component will either be routines residing entirely on the client side, or it
will be a component of the OS/2 Server or it may be a system service.

In Figure 7, we see that the client part of the application requesting file
services (represented by PTDA 1), communicates directly with File
Services. The client side of the other application (represented by PTDA
2), points to the handle table on the server side, and eventually winds up
communicating with the pipe server. Notice also that the linked list
based on the microkernel port, also contains a timer data structure,
indicating that application 2 also has a pending timer request.

Chapter 4. OS/2 Functions 57

The semaphore and the queue component of the OS/2 Server have their
own handle management.

• Server side handle management

The handles on the OS/2 Server side are microkernel ports. There is
one global handle table on the server side, which is an array of pointers.
The microkernel ports are hashed to get their position in the table. Each
pointer points to a linked list of handle table entries, with the last pointer
being null. Each handle entry is part of the data structure associated
with the component being managed, so the address of a component ′s
data structure can be found by getting the address of its table entry via
the microkernel port.

The handles managed by the handle management component, and how they
participate on the client and/or server side are:

• File - only client side interaction

• Device - only client side interaction

• Pipe - both client and server interaction

• Timer - only server side interaction

• Process - only server side interaction

• Thread - only server side interaction

4.1.3.2 Session Support
Refer to 3.2, “Event and Window Services” on page 32, to get a definition of
a session.

The session component of the OS/2 Server provides the API calls which
implement the functionality of the OS/2 Warp (Intel) session management. In
OS/2 Warp Connect (PowerPC Edition), session management is the
responsibility of the event and window services. When the OS/2 Server
receives a session request, it will work in conjunction with the event and
window services to fulfill the request. Event and window services will be
started by the OS/2 Server during startup.

4.1.3.3 Tasking
The tasking component of the OS/2 Server is responsible for the
management of OS/2 processes and threads. This include process and
thread creation, control and termination. The tasking component is also
responsible for providing process and thread information and for handling
thread synchronization through thread suspension or allowing threads to wait
on other threads. Finally, the tasking component is responsible for

58 OS/2 Warp (PPC)

implementing the process and thread API as we know it from OS/2 Warp
(Intel). The tasking component interacts with other OS/2 Server components
including memory management, the loader, and the semaphore system. Its
main interface is the microkernel, because it directly uses the microkernel
task and thread support, see 2.1.4, “Tasks and Threads” on page 16.

The tasking component of the OS/2 Server has the following key
responsibilities:

• Process creation and thread creation

• Maintain information about process and thread specific data

• Control and provide information about current processes and threads

• Process and thread termination and cleanup

Process and Thread Creation:

An OS/2 process maps directly to a microkernel task. A process is started
by a DosExecPgm call to the tasking component. A control block called the
Per Task Data Area (PTDA) is created on behalf of the process. An initial
thread is created on the behalf of the process.

An OS/2 thread maps directly to a microkernel thread. A thread is created
by the DosCreateThread call to the tasking component. A thread information
block (TIB) structure is initialized and associated with the thread.

Process and Thread Information Maintenance:

Each process has a PTDA associated with it. The PTDA is kept in the
address space of the OS/2 Server.

The main content of the PTDA is the OS/2 handle of the process, the
associated microkernel port and the address of the TIB for the initial thread.

As each new thread is created, a TIB is associated with it. The TIB is kept in
the address space of the OS/2 Server and it contains port information,
priority information, thread stack information, and the rest of the machine
state information.

Process and Thread Query and Control:

The DosGetInfoBlocks API call provides information to an application about
its process and its current thread. The DosSetPriority call enables
applications to alter the priorities of their threads.

Chapter 4. OS/2 Functions 59

The tasking component supports synchronization between a process and its
child processes. It supports synchronization between threads, so that
threads may wait on other threads, threads may suspend other threads and
threads may kill other threads. Also the DosEnterCritSec/DosExitCritSec
calls are supported.

Process and Thread Termination and Cleanup:

Process and thread termination is managed by the tasking component of the
OS/2 Server. When the initial thread of a process is terminated, the process
is terminated.

When a thread terminates, its TIB is released. When a process terminates,
its PTDA is released. A process may have registered exit processing. In this
case the tasking component is responsible for managing the exit list
processing.

4.1.3.4 Memory Management
The memory management component of the OS/2 Server has the following
key responsibilities:

• Manage private/shared memory areas for OS/2 applications

• Manage page faults for guard pages and executable objects

• Manage the growth and shrinkage of the paging space used by the
microkernel ′s default pager.

• Implement memory related OS/2 API

The memory management component of the OS/2 Server uses the
microkernel virtual memory management functions to implement the OS/2
memory management semantics. OS/2 applications expect certain behavior
with regard to memory allocation and shared memory, such as all shared
memory must be loaded at the same virtual address in all participating
processes.

The memory manager component takes advantage of the microkernel′s
External Memory Management (EMM) support to free it from page
management, and instead let it focus on memory object management.

See 2.2.3, “External Memory Managers” on page 25 for more information on
the EMM. The EMM will direct a page fault to the appropriate page fault
handler for that particular page. The page fault handler would be the default
pager, the OS/2 loader or the File Services, depending on the context of the
faulted page.

60 OS/2 Warp (PPC)

Private and Shared Memory for OS/2 Applications:

The memory manager component uses arenas to manage private and shared
memory for OS/2 processes. An arena is a circular-linked list that is used to
keep track of memory allocation in the address space of an OS/2 process.
The information contained in the arenas is just what is needed to extend the
microkernel memory semantics to OS/2. The virtual address space
supported by OS/2 is a 4GB linear address space with its layout (see
Figure 8).

Figure 8. Virtual Address Space Layout

Chapter 4. OS/2 Functions 61

An OS/2 process may request private memory either by using the
DosAllocMem call or by using the C runtime support. The C runtime support
of malloc, realloc, etc. is not using the memory management component, but
calls the appropriate microkernel functions directly.

The Global Shared Memory (GSM) contains memory that is immediately
accessible to all processes in the system. The user processes will only have
read/execute access to the GSM, while servers (for example the loader) may
have write access.

The Global Coerced Memory (GCM) is used where there is need for more
restricted access to memory objects. In the GCM area, memory is allocated
in blocks, where each block may have different access attributes for each
process with addressability to the block.

Page Faults for Guard Pages and Executable Objects:

The manager of page faults on behalf of the memory manager is called the
OS/2 pager. The OS/2 pager is responsible for managing page faults for
pages that contain compressed data (for example Presentation Manager
resources) and stack guard page faults.

Compressed data page faults are handled by invoking the loader to load the
appropriate information from the executable file and decompressing it.

Stack guard page faults are handled by simply allocating more stack space
via the exception handling component, see 4.1.3.10, “Exception Handling” on
page 64.

All other page faults are handled by the default pager or File Services.

Growth and Shrinkage of Paging Space:

The growth and shrinkage of the default pager′s paging space is the
responsibility of the OS/2 Server. It does so by issuing appropriate API calls
(DPAGER_XX...) to the default pager.
The OS/2 Server must:

• Monitor the utilization of the paging space via DPAGER_Set_Threshold.
The default pager will send a notification message to the OS/2 Server
when the threshold is reached.

• Allocate additional space to the paging space when the utilization of the
paging space has reached 80%. This is done by the call
DPAGER_Add_Space.

62 OS/2 Warp (PPC)

• Remove excess space from the paging space when the utilization of the
paging space drops below 50%. This is done by a call to
DPAGER_Remove_Space.

• Log errors to the system log

Implement Memory Related OS/2 API:

The memory manager component of the OS/2 Server handles all the memory
related API calls, with the exception of the Memory Suballocation Package
(MSP). The MSP is implemented solely in the DOSCALLS.DLL client library.

The memory manager component uses the microkernel virtual memory
manager functions in order to implement the memory related API. The calls
for memory allocation need to be identified to the microkernel. This is done
by sending the task port of the OS/2 process doing the API call, with the call
to the microkernel.

The process of identifying the originator of the API call and manipulating the
message parameters is the job of the Message Interface Generator code.

4.1.3.5 Semaphores
The semaphore component of OS/2 Warp Connect (PowerPC Edition) is
ported directly from OS/2 Warp (Intel). The only alteration necessary, is to
the DOSCALLS.DLL, which now uses microkernel interprocess
communication to communicate with the semaphore component of the OS/2
Server.

4.1.3.6 File I/O Support
The OS2 Server is not involved with the file I/O requests made by the
applications. The file I/O API calls in DOSCALLS.DLL are converted to the
FS_XX... API calls of File Services.

4.1.3.7 Pipes
The main effort regarding pipe creation and maintenance is with the Pipe
Server running as a system service. An application calls a pipe API residing
in the DOSCALLS.DLL. Parameters are validated within the DLL. If OK, the
request is shipped to the pipe server and handled there. Upon completion of
the request, a process handle on the client side is generated or updated (if it
already exists). See 4.1.3.1, “Handle Management” on page 56 for an
explanation of handle management.

Chapter 4. OS/2 Functions 63

If the API request involves a semaphore, or the pipe content is of type
message, the OS/2 Server participates in the pipe management process,
otherwise the pipe is managed solely by the pipe server.

4.1.3.8 Queues
The queues component of OS/2 Warp Connect (PowerPC Edition) is just
ported from OS/2 Warp (Intel), with the necessary alterations to the
QUECALLS.DLL to use microkernel interprocess communication to the queue
component of the OS/2 Server.

4.1.3.9 Timer Management
The timer management component of the OS/2 Server is responsible for
implementing the API calls DosSleep, DosGetTime, DosSetTime and the start
and stop timer API calls.

The DosSleep call and the DosGetTime call are implemented by directly
calling the similar function in the microkernel from the DOSCALLS.DLL.

The DosSetTime function is handled differently, because it must perform a
privileged operation on the microkernel. In this case the OS/2 Server is
called via the RPC interface, and the OS/2 Server does the necessary call to
the microkernel, through the Host port in Figure 6 on page 54.

The timer calls are handled as in OS/2 Warp (Intel), apart from the fact that
the timeout notifications are handled by the microkernel by sending
messages to the timeout port of the OS/2 Server. The notifications are sent
as a result of preceding set alarm calls made by the OS/2 Server to the
microkernel.

4.1.3.10 Exception Handling
The exception handling component of the OS/2 Server is responsible for
emulating all the exception related API calls and also for handling exceptions
raised by the microkernel. Exceptions that arrive at the OS/2 Server can
have two distinct origins:

• Microkernel Raised Exceptions
These are the actual microkernel exceptions that the OS/2 Server
receives by a thread of the OS/2 Server called the system exception
server.

Examples of these exceptions are all the hardware generated exceptions,
such as memory access violations, divide by zero, etc. The OS/2 system
exception server receives these exceptions, translates them into OS/2
style exceptions and calls the appropriate routines to handle them. One

64 OS/2 Warp (PPC)

special exception handled by the system exception server, is the guard
page fault exception (see “Page Faults for Guard Pages and Executable
Objects” on page 62).

The system exception server simply allocates more stack memory on
behalf of the failing thread.

• Client Side Raised Exceptions
These exceptions are not exceptions from the microkernel point of view,
but are actually OS/2 exceptions resulting from DOSXXX API calls on the
client side. These API call generated exceptions are handle by a
component of the OS/2 Server called the application exception server.

4.1.3.11 Message Management
The message management component of the OS/2 Server enables
application programs access to messages kept in separate files outside of
the applications. This component is ported directly from OS/2 Warp (Intel)
The utility MKMSGF is ported and also the linker must support the binding of
the message support segment created by the MKMSGF utility.

4.1.3.12 Debugging Support
The debug component of the OS/2 Server supports two interfaces to its
system services. These interfaces are the DosDebug API known from OS/2
Warp (Intel), and the new Debug Probe. Debug support enabled by the
debug probe is the capability to follow the flow of an application request
across all server calls and into the microkernel.

The debug probe provides an interface to the OS/2 Server for debuggers
which require information specific to the OS/2 Server. The primary interface
is a set of request/reply messages required to debug or trace debuggee
programs.

The API calls available to debuggers are similar to the DosDebug API calls.

4.1.4 Loader
All tasks (or OS/2 processes) in the system after the initial tasks loaded by
the bootstrap loader (see 4.1.5.1, “Bootloader” on page 67) are loaded by a
single loader, the OS/2 server loader, in cooperation with the OS/2 Server
memory management component.

The OS/2 Warp (Intel) semantics of global shared memory (text and data) at
the same virtual address in every task ′s address spaces is preserved. This
is true for all tasks including virtual DOS machines, device drivers and
system services.

Chapter 4. OS/2 Functions 65

Some of the design goals for the OS/2 loader are:

• Use a single library binary and a single virtual copy of libraries loaded by
both OS/2 processes and system services.

• Have a single loader in the system at any point in time. Preferably, this
loader should have been implemented as a system service.

• Provide global shared memory services for those tasks (and OS/2
processes) that require them.

The loader is responsible for the loading of code and data from executable
modules on disk on behalf of an OS/2 application. The loader supports 32-bit
little endian modules in the Executable and Linking Format (ELF) format. See
AT&T UNIX System V Release 4 Programmer′s Guide: ANSI C and
Programming Support Tools for more information about ELF.

The responsibilities of the loader can be summarized as follows:

• Loading of OS/2 executable and OS/2 dynamic link libraries and system
service libraries at OS/2 process creation time at the request of the
tasking component of the OS/2 Server.

• Unloading the OS/2 executable and OS/2 dynamic link libraries and
system service libraries at OS/2 process termination time at the request
of the tasking component of the OS/2 Server.

• Loading and unloading of OS/2 dynamic link libraries and system service
libraries as requested by the OS/2 application.

• Cooperating with the tasking component of the OS/2 Server to supply per
process and per system library initialization and termination.

• Cooperating with the debug component of the OS/2 Server to support the
DosDebug API.

• Providing access to resources as requested by the OS/2 application.

• Providing the API for loading, unloading and querying dynamic link
libraries.

• Allowing OS/2 applications access to functionality exported by system
services.

66 OS/2 Warp (PPC)

4.1.5 Startup
This section describes the OS/2 Warp Connect (PowerPC Edition) boot
sequence resulting in the microkernel and the OS/2 Server running. The
OS/2 Server subsequently starts up the rest of the OS/2 services including
the user interface and the Multiple Virtual Machines. Also the event and
window services is started by the OS/2 Server.

4.1.5.1 Bootloader
The boot process begins when the bootloader image is brought into memory
by the PowerPC firmware.

The image in memory contains the bootloader program, the boot device
driver and the file system extensions needed to access the boot media. The
device driver and the file system support in the bootloader can change
depending on the installation (for example the boot device is a CDROM
device and the installation target is a hard disk). The device extensions and
file system extensions are dynamically linked to the bootloader to allow it to
read files for each boot device.

There is a distinction between the boot device and its file system extension
and the paging device and its file system extension. They may be the same
for a particular boot of the system, but if the boot device is a CDROM device,
the paging device would be assigned to a different device.

The OS/2 Warp Connect (PowerPC Edition) installation for release 1.0
requires two disk partitions, a small hidden partition required by the
PowerPC firmware, and the system partition. Chapter 5, “Installation” on
page 129 will provide you with more information about installation
requirements.

The hidden partition only contains the bootloader, which is loaded and
started by the firmware.

The system partition contains the microkernel binaries, the base paging
space, the Basic Volume Manager, the registry, all of the OS/2 services and
configuration files such as BOOT.CFG and CONFIG.SYS, as well as stanza
files describing the hardware.

A paging file managed by the OS/2 server will also be on the system drive.
The bootloader is responsible for loading programs and files into memory
and creating and maintaining a data structure to be delivered to the
microkernel when it is started by the bootloader.

Chapter 4. OS/2 Functions 67

The bootloader reads the BOOT.CFG file from the system partition.
BOOT.CFG is an ASCII file containing information about programs and files to
be loaded into memory by the bootloader.

BOOT.CFG may contain entries PN_BOOT_DEV and PN_BOOT_FS that
specify the storage device and the file system to be used for reading the
remainder of the files loaded by the bootloader. The entries may appear
multiple times, allowing the boot information to be collected from different
places.

A PN_BOOT_CONFIG statement in BOOT.CFG gives the name of a
configuration file that contains additional configuration information.

The bootloader has a fail safe boot recovery capability in the case of bad
boot information. The bootloader will use the last good copy of BOOT.CFG in
this case.

After the bootloader has finished its task (loading programs and files into
memory), it starts the microkernel. The microkernel starts the bootstrap
task.

4.1.5.2 The Bootstrap Task
The bootstrap task has all of the files loaded by the bootloader in its virtual
address space. The bootstrap task knows which tasks to start via the
information it obtains from the microkernel through the host_get_boot_info
interface. The microkernel, on the other, hand got the information directly as
a data structure from the bootloader.

The bootstrap task starts the tasks as identified by the PN_FILE_NAME
entries in BOOT.CFG. The bootstrap task knows if a file named in a
PN_FILE_NAME is a program to be started, because a program must have at
least one PN_FILE_ARG=<str ing> entry. If no argument is required, the
<str ing> is just a nul l str ing.

The order of the startup of the individual components is important. They are
started in the order they appear in the BOOT.CFG file, due to dependencies
on previously started components. The bootstrap task waits for a started
component to register itself with the root name server and to place its
service port within the root name server.

The root name server itself is a special case to the bootstrap task, in that the
bootstrap task waits for a message from the root name server (after having
started it), containing the root name server service port. The bootstrap task

68 OS/2 Warp (PPC)

provides the root name server service port to all services is starts. The
bootstrap task also registers its file services port with the root name server.

Services Started by the Bootstrap Task:

As already mentioned, the root name server is started and its service port
kept by the bootstrap task. The root name server enables name services to
be present for all components started subsequently. The name space entries
which need to be persistent, will not be made persistent until the registry
server is started later in the boot sequence.

The default pager is started with no paging space available. It registers itself
with the root name server. The base paging space is allocated by the
dominant personality pager initialization task (PAGRINIT), after the paging
device driver and File Services are started later in the boot sequence.

In release 1.0, Device Configuration Services consists of the Hardware
Resource Manager (HRM), Configuration Manager and Device Manager.
HRM is started first, and it uses stanza files to recognize the hardware in the
system. Stanza files are ASCII text files containing descriptions of the
various hardware components. Next, the Configuration Manager is started,
followed by the Device Services. Device Services calls the API LDR_XX... to
start the device drivers. The drivers are then placed in memory by the
bootloader.

The bootstrap task now starts the OS/2 initialization, the Basic Volume
Manager and the File Services. It is now ready to start PAGRINIT, because
the file system is available. After paging is enabled, the registry is started.
Finally, the bootstrap task creates the OS/2 Server task and starts the OS/2
Server.

4.1.6 Shutdown
The intent of a shutdown is to quiesce applications and system services in
preparation for rebooting or powering off the system. Therefore, programs
receiving a shutdown message, should make sure that any volatile data
should be saved before it terminates. A program does not need to
terminate, and could in fact request that shutdown be halted. An OS/2
Server thread controls the shutdown process.

Chapter 4. OS/2 Functions 69

4.1.6.1 Shutdown Invoked by User or API
The user or an OS/2 application can request a shutdown of the system. This
is done via a Workplace Shell desktop selection, or via the APIs
WinShutdownSystem and DosShutdown. WinShutdownSystem is an orderly
shutdown for OS/2 applications and system services that elect to be notified
of a pending shutdown. DosShutdown simply flushes the file system cache
and perform other requested actions such as system dump and reboot.

WinShutdownSystem:

The Workplace Shell gets the desktop shutdown request from the user and
issues a WinShutdownSystem call to Presentation Manager. A Presentation
Manager application may also call WinShutdownSystem. Then the
Presentation Manager calls the OS/2 Server.

The OS/2 shutdown thread:

• Calls event and window services to shutdown screen groups and
sessions as described in 3.2, “Event and Window Services” on page 32.
A nonzero return code makes the shutdown halt.

• Sends a shutdown message to each server that registers its service port
in the \server or \device name space nodes with an attribute of
ShutdownMessage=Yes. Servers or device drivers that do not have this
attribute will not be informed about the shutdown.

− The shutdown thread sends shutdown messages to each server
followed by shutdown messages to each device driver. An attribute
of ShutdownOrder={range 0-255} can be specified to control the
order of notification. Servers with a value of 0 are notified first, while
servers with a value of 255 are notified last. Servers with the same
value have no implied ordering.

− The File Services shutdown, ShutdownOrder=128, will flush any disk
caches and disable further write operations, but the File Services will
remain operational and able to handle page faults.

− These shutdown messages are done as remote procedure calls. The
shutdown thread will wait for each server to respond. In release 1.0,
the number of servers requesting notification are small, and they are
trusted to respond.

• Calls event and window services again to indicate that shutdown is
complete or that it is cancelled.

70 OS/2 Warp (PPC)

• Returns control to the caller of WinShutdownSystem (the Workplace Shell
or the Presentation Manager application) which displays a message to
the user that it is safe to power off or reboot the system.

DosShutdown:

The DosShutdown API has been extended to allow a Software Distribution
Manager like NetView/DM to initiate a file system shutdown, followed by a
reboot. System dump and halt options have also been added.

DosShutdown can perform the following actions:

• Send a Shutdown message to the File Services to flush buffers to disk
and quiesce the File Services. The File Services will disable further write
operations but will remain operational and able to handle page faults.

• Perform a system dump, reboot the system or halt the system as
required.

• Control is returned to the caller which can then display a message
informing the user that it is safe to turn off the power or reboot the
system. If a dump, halt or reboot is requested, control is not returned if
the request is successful.

In order for a system dump to be taken, the location of the dump file must be
specified to the microkernel by a systems management utility.

The dump, halt and reboot actions are initiated through the host_reboot call
to the microkernel, using the Host Control port, with RB_DUMP, RB_HALT or
RB_REBOOT option specified.

4.1.6.2 Shutdown via CTRL-ALT-DEL
The shutdown thread of the OS/2 Server performs the following actions when
it receives a CTRL-ALT-DEL notification:

 1. Sends a message to the screen, indicating rebooting.

 2. Sends a Shutdown message to the File Services to flush buffers to disk
and quiesce the File Services. The File Services will disable further write
operations but will remain operational and able to handle page faults.

 3. Reboots the system via the host_reboot call to the microkernel, using the
Host Control port.

Chapter 4. OS/2 Functions 71

4.1.6.3 Abnormal Termination of a Shared Service
In release 1.0, there is no provision for restarting a failing system service
The architecture allows for a monitoring of servers through the port_death
notification, so that the OS/2 Server might restart failing system services.

4.2 The MVM Environment
OS/2 Warp Connect (PowerPC Edition) includes binary support for DOS,
Windows or DPMI applications. In this, the first release, the operating
system provides DOS support that is based on the OS/2 Warp (Intel) version
of the product.

The Multiple Virtual Machine (MVM) environment provides the following
functionality to the OS/2 Warp Connect (PowerPC Edition) operation system:

• Boots a DOS emulation kernel in a Virtual DOS Machine (VDM).

• Boots a non-emulated version of DOS (for example DRDOS, Novell DOS,
DOS V3.3 and above) in a Virtual Machine. In OS/2 Warp (Intel), this is
referred to as a Virtual Machine Boot (VMB) .

• Runs multiple DOS applications concurrently in the system.

• Runs DOS applications fullscreen or windowed.

• Provides DOS, Windows, DPMI applications access to a common set of
file systems shared with other personalities in the OS/2 Warp Connect
(PowerPC Edition) environment.

• Provides virtual device support to allow sharing of devices between DOS,
Windows, DPMI applications and OS/2 applications.

• Provides LIM EMS 4.0 support.

• Provides LIMA XMS 2.0 support.

• Provides DPMI 0.95 host support in the system.

• Provides support for Windows 3.1 applications by running WIN-OS/2 from
OS/2 Warp (Intel) in a virtual machine.

• Provides support for network redirection of drives in a VDM.

• Provides support for user configuration of the MVM environment on a per
VDM basis.

• Support Win32s applications as found in OS/2 Warp (Intel).

The MVM environment provides the above listed functionalities in the OS/2
Warp Connect (PowerPC Edition) system with the help of several components

72 OS/2 Warp (PPC)

from the Service Layer of the system. The service layer is a term to
describe services or facilities available in the operating system, but which
are not part of either the OS/2 Server or the MVM environment.

The components that the MVM environment uses are:

• OS/2 Loader .

The OS/2 loader is used for loading programs of attaching libraries to
already running programs.

• HRM.

The Hardware Resource Manager portion (HRM) is used to request and
get hardware resources for a virtual machine.

• File Server .

The file server provides file system services to Virtual Machines.

• Event and Session Manager .

For session management and keyboard and mouse events.

4.2.1 OS/2 Warp (Intel) Multiple Virtual DOS Machine
The Multiple Virtual DOS Machine (MVDM) architecture in OS/2 Warp (Intel)
is designed to exploit the virtual 8086 (V86) mode of the 80X86 processor,
which allows operating systems such as OS/2 Warp (Intel), to execute
multiple DOS applications within the 80X86 protected mode environment.

The MVDM Kernel controls the state and the architecture of concurrent
VDMs, and is composed of the following four major components as shown in
Figure 9 on page 74.

Chapter 4. OS/2 Functions 73

Figure 9. MVDM Architecture

 1. The Virtual DOS Machine Manager (VDMM)

This component contains the mechanism to start and interact with DOS
applications. It creates, initializes, and terminates Virtual DOS Machines
(VDM).

 2. 8086 Emulation

The 8086 emulation manages communication between 8086 instruction
streams and virtual device drivers.

 3. DOS Emulation

This component emulates the function and operation of the DOS
operating system on a per-VDM basis. DOS services are emulated with
the MVDM kernel, or by invoking protected mode services provided by
the OS/2 kernel.

74 OS/2 Warp (PPC)

 4. The Virtual Device Driver Manager (VDDM).

The VDDM loads, initializes and communicates with virtual device
drivers. Virtual device drivers are required to virtualize the hardware
and ROM BIOS, thereby allowing DOS applications to access hardware
device and BIOS without affecting other applications in the system.

4.2.2 OS/2 Warp Connect (PowerPC Edition) MVM Environment
The MVM environment is the facility that provides DOS, Windows or DPMI
support in the OS/2 Warp Connect (PowerPC Edition) operating system.
Based on the OS/2 Warp (Intel) Multiple Virtual DOS Machine (MVDM)
architecture, the MVM environment is built from many of the same
components as the MVDM. Figure 10 shows the MVM environment
architecture.

Figure 10. MVM Architecture

Obviously, with the change to the PowerPC platform, the MVM environment
had to grow in order to support the new requirements of the PowerPC

Chapter 4. OS/2 Functions 75

processor. For example, without the Intel 80X86 processor to cater for Intel
instructions, OS/2 Warp Connect (PowerPC Edition) provides an Instruction
Set Translator (IST) to do the job.

The MVM environment is comprised of the following four major components:

• MVM Server

A Multiple Virtual Machine server that exports a message based API to
create, configure and destroy VDMs. The server maintains a database of
global and per virtual machine configuration and tuning properties.

• 8086 Emulation or EM86

The EM86 component services all exceptions in a VDM, decodes the
instruction that caused the exception and dispatches an appropriate
Virtual Device Driver to emulate or virtualize it.

• DOS Emulation

This component emulates the function and operation of the DOS
operating system on a per-VDM basis. This component utilizes a DOS
Emulation Service Interface (DEM) in order to access microkernel
resources.

• Virtual Device Drivers

A collection of Virtual Device Drivers (VDDs) that virtualize or emulate
different aspects of the PC and X86 environment for the VDM.

4.2.3 Installation
The MVM Environment can be installed during the Personality Feature
Installation Phase of the OS/2 Warp Connect (PowerPC Edition) install
process. This means that the MVM can be installed during the OS/2 Warp
Connect (PowerPC Edition) installation, or later as part of an additional
installation of features. More details about the OS/2 Warp Connect (PowerPC
Edition) installation is available in section 5.2, “Feature Install” on page 131.

For the purpose of installation, the MVM environment is composed of three
main components. They are:

• Multiple Virtual DOS Machine (MVM) server, which supports the Virtual
DOS Machines (VDM)

• WIN-OS/2

• Win32s

76 OS/2 Warp (PPC)

Although you can install the MVM environment using the defaults, you can
customize which of the sub-features of the environment that you install.
Optional sub-features of the MVM Environment available are:

• DOC - Documentation Install Object includes child install objects if there
are many kinds of documentation.

• DPMI - DOS Protected Memory Interface support.

• EMS - Expanded Memory Specification support.

• XMS - Extended Memory Specification support.

• Sys Util - System Utilities support includes, backup hard disk, change file
attributes, display directory tree, manage partitions, label diskettes, link
object modules, recover files, restore backed-up files, and sort filters.

WIN-OS/2 and Win32s installation is optional, and is dependent in the MVM
server (with DPMI support) also being installed.

4.2.4 Multiple Virtual Machine Server
The MVM server in OS/2 Warp Connect (PowerPC Edition) provides the
mechanism for the creation, initialization and destruction of Virtual Machines.
A Virtual Machine is an environment in which a DOS, Windows or DPMI
application can execute.

Although providing somewhat behind the scenes support, the MVM server is
integral to the MVM environment. The server provides functionality that is
similar to that of both the Virtual DOS Machine Manager (VDMM) and the
MVDM Kernel found in OS/2 Warp (Intel).

The MVM server is closely integrated into the OS/2 Warp Connect (PowerPC
Edition) environment. The MVM server starts via a RUNSERVER= entry in
the CONFIG.SYS when OS/2 Warp Connect (PowerPC Edition) boots.
Additional information on the OS/2 Warp Connect (PowerPC Edition) boot
process is found in section 4.1.5, “Startup” on page 67. The MVM server
provides the following services to the MVM environment:

• Identifies the hardware environment that it is running in (for example, the
PowerPC) and loads the appropriate module binaries into the MVM
environment.

• Loads and initializes the other components in the MVM environment by
using the system loader in the task manager.

• Provides services to create, manage and destroy X86 VDMs in which
DOS, Windows or DPMI applications can be executed. These services

Chapter 4. OS/2 Functions 77

are exported to other servers in the OS/2 Warp Connect (PowerPC
Edition) service/personality layer in the form of a message based API.

• Exports a set of services to other components in the MVM environment
as well as other components in the OS/2 Warp Connect (PowerPC
Edition) service/personality layer to control the execution state of the
Virtual DOS Machines.

• Provides a set of services to allow per VDM configuration to be done.
This allows users to configure and control the resources associated or
needed by the application that they need to execute in a particular VDM.

Although the MVM environment is structured as an OS/2 task it still utilizes
the resources provided by the microkernel. It does this through the use of
ports. A port is a unidirectional communication channel between a client
that requests a service and a server that provides the service. Ports are
discussed in more detail in section 2.1.3, “Inter Process Communication
(IPC)” on page 10. In future releases of OS/2 Warp Connect (PowerPC
Edition), the MVM environment will move away from the port communication
structure and communicate directly to the OS/2 server.

The MVM server itself is comprised of a number of components. Many of
these components provide similar services to those already found in the
OS/2 Warp (Intel) environment. The MVM server components are:

• Boot/Initialization

This component of the MVM server is the one that performs boot time
initialization of the MVM environment.

• Event List Management

The Event List Management component of the MVM server exports a set
of services that are used by the emulation code (EM86 + VDDs)
components in the MVM environment to register event handlers for
various events.

• Virtual Machine Manager

The virtual machine manager (VMM) supports services that control the
operation of virtual machines though creation to termination. Access to
the services are through the SERVICE_PORT.

78 OS/2 Warp (PPC)

4.2.5 EM86 (8086 Emulation)
The 80X86 emulation component (EM86) emulates 80X86 instructions and
provides the functions required to support emulation to the other components
of the MVM server. On an Intel based machine, EM86 would use the virtual
8086 mode of the Intel processors to provide low-level emulation functions.
On the PowerPC, EM86 uses the services provided by the Instruction Set
Translator (IST) to support the functions that it provides.

The EM86 components emulate some INT instructions, all IOPL-sensitive
instructions, and some I/O instructions for 80X86 processors. These
components also helps virtual device drivers emulate INT and I/O
instructions. EM86 consists of the following major components:

• Boot-time initialization

• Client creation-time initialization

• Instruction emulation

• Virtual Device Helper (VDH) functions

• Hardware interrupt dispatcher.

EM86 uses the Instruction Set Translator (IST) to support the emulation of
Intel instructions on the PowerPC. Low level instruction is performed by the
IST. EM86 decodes instructions using the IST and passes control to the
appropriate handler. If the instruction is unsupported or cannot be decoded,
an invalid opcode (INT 6) is reflected to the VDM.

4.2.6 Instruction Set Translator
The Instruction Set Translator (IST) is a mapping layer to allow Virtual Device
Drivers to use the current Virtual Device Helper (VDH) services with the IST.
The IST also provides a black box emulator that emulates the Intel instruction
set on non-Intel (PowerPC) hardware. This means that the Instruction Set
Translator is the only area that understands Intel instructions on the non-Intel
(PowerPC) machines.

The use and functionality of the IST is not restricted to the MVM environment.
When the Intel Binary Support for OS/2 applications is added to OS/2 Warp
Connect (PowerPC Edition) in a future release, the IST will be used to
provide the required emulation support.

The architecture of the DOS emulation is such that the IST is perceived as a
replaceable module. That is, if the MVM environment was moved to an Intel

Chapter 4. OS/2 Functions 79

based platform, then the function of the IST could quickly and easily be
replaced by the actual Intel 80X86 processor.

The performance of the IST exceeds that of most of the other DOS/Windows
software emulators that are available in the market today. In order to
achieve this result it was necessary to limit the function supported by the
IST. A brief summary of the limitations of the IST are listed below:

• Numeric coprocessor support is limited to 64 bits, instead of the 80 bits
supported in the Intel Architecture.

• No limit checking for selectors.

• No checking of selector attribute bytes.

• No page table emulation (no page level memory protection or per-page
memory management for protected mode applications). The means that
it will not be possible to support the DPMI 0.95 demand-page memory
functions.

• The IST is 386 only. Instructions specific for 486 (and above) are not
supported.

4.2.7 DOS Emulation
The DOS Emulation Kernel emulates the DOS environment (such as DOS
data structures and interrupt 21s) for each DOS session. DOS emulation is
broken into two major pieces, one half that runs in the Intel address space
(V86 mode on Intel or real mode in the IST) and the other half runs natively.

Figure 11 on page 81 shows the two parts of the DOS emulation servicing an
interrupt in the MVM environment.

80 OS/2 Warp (PPC)

Figure 11. MVM Interrupt Processing

The piece of the DOS emulation running in the Intel space receives
application requests in the Intel address space, updates the appropriate data
structures, and then passes the request to the native piece of DOS
emulation. The native piece of code acts of a router and routes the request
to the appropriate worker routine, such as a file serve routine. The return
code from the worker routine is then passed back to the Intel piece of code,
so that it can return the proper result to the application.

The two components of the DOS emulation are:

• DOS Kernel. The DOS Kernel services the requirements of the DOS
function calls that do not require services from outside the Intel space.
An example of this would be the alloc_mem function call.

• DOS Emulation Service Interface . The DOS Emulation (DEM) Service
Interface acts as a router of information requests for the DOS Kernel.
The DEM interface is a PowerPC specific and is not present in the OS/2
Warp (Intel) version of the emulator. The DEM requests are routed to

Chapter 4. OS/2 Functions 81

either a Personality Neutral Service, a Cross Personality Service, the IBM
Microkernel, a Virtual Device Driver, or a Physical Device Driver.

The services that the DEM layer provides include:

− File I/O - File, directory, and disk I/O to include Universal Naming
Convention (UNC) names.

− Device I/O - I/O to devices to include IOCtl support.

− Named Pipe I/O - Support for the client end of named pipes.

− Semaphores - All semaphore support.

− Internationalization - Internationalization to support both DBCS and
Unicode.

− Other - Other services such as initialization and termination support.

4.2.8 Virtual Device Drivers
DOS applications tend to access the hardware resources like devices
directly. In order for multiple DOS applications, each running in a Virtual
Machine, to access physical hardware devices, each virtual machine must be
provided with a set of virtual interfaces to these devices. This is so the
actions of one application running in a virtual machine does not affect the
state of the device as perceived by other entities in the system.

The Virtual Device Drivers (VDD) provide these virtual interfaces. The VDD
model used for the drivers is mostly unchanged since OS/2 Warp (Intel). The
virtual device drivers that are supplied with OS/2 Warp Connect (PowerPC
Edition) provide the same level of support that is available in OS/2 Warp
(Intel).

Although the VDD model is mostly unchanged, there has been some changes
to the implementation of the virtual device drivers in the OS/2 Warp Connect
(PowerPC Edition) environment. One of the most obvious changes is that the
virtual device drivers are no longer loaded at ring 0. Along with some of the
physical device drivers, they are now at the user (ring 3) level of the
operating system.

In OS/2 Warp (Intel), all of the virtual device drivers stored in the system as
individual .SYS files and are loaded from the CONFIG.SYS file. In the first
release of OS/2 Warp Connect (PowerPC Edition), that has changed. The
base VDDs are found in the system dynamic link librariy MVDM.DLL, while
the installable VDDs are still listed in the CONFIG.SYS file.

82 OS/2 Warp (PPC)

4.2.8.1 Available VDDs in OS/2 Warp Connect (PowerPC
Edition)
The list of Virtual Devices Drivers in OS/2 Warp Connect (PowerPC Edition) is
no different to that of OS/2 Warp (Intel), whether they are individual DLLs or
combined in the MVDM.DLL file. Table 1 briefly defines the function of each
of the available VDDs.

Table 1. OS/2 Warp Connect (PowerPC Edition) Virtual Device Drivers

VDD Function

VAUDIO Virtualizes Winos2 audio support

VBIOS Virtualizes the BIOS data areas

VCDROM Virtualizes CD-ROM support

VCMOS Virtualizes the CMOS areas

VCOM Virtualizes serial ports

VDISPLAY Virtualizes Winos2 display (Uses OS/2 graphics DLL ′s)

VDMA Virtualizes the DMA controller

VDPMI Implements DPMI services

VDPX Implements the DOS extender (DOSX) services for DPMI
applications

VDSK Virtualizes a hard disk controller

VEMM Supports expanded memory (EMS) management

VFLPY Virtualizes the floppy disk controller

VKBD Virtualizes the keyboard controller

VLPT Virtualizes the parallel ports

VMOUSE Virtualizes the mouse

VNPX Virtualizes the numeric coprocessor of Intel based machines

VPIC Virtualizes the programmable interrupt controller

VTIMER Virtualizes the Intel 8259A timer

VVIDEO Virtualizes the video display

VW32S Supports Win32s services

VWIN Supports seamless Windows applications on the desktop

VXMS Support extended memory management

Chapter 4. OS/2 Functions 83

4.2.9 Windows Support
The Windows support for the MVM environment is provided by WIN-OS/2.
This is the same support that is currently provided in OS/2 Warp (Intel) The
windows support provides Windows 3.1 application compatibility as well as
support for Win32s version 1.15 and below applications .

The performance of the WIN-OS/2 subsystem is heavily dependent on the
Instruction Set Translator (IST). On the PowerPC, all of the WIN-OS/2 code
runs in the emulated Intel space, so the performance of the IST and the MVM
server are pivotal to the performance that the Windows system will display.

By providing the same support for DOS and DPMI applications as OS/2 Warp
(Intel), WIN-OS/2 is able to run unmodified for MVM. The OS/2 Warp Connect
(PowerPC Edition) WIN-OS/2 implementation provides support for the
Windows 3.1 API set (with the exception of VxD support).

4.2.10 Changes to The Command Set
OS/2 Warp Connect (PowerPC Edition) and the MVM environment, continue
to offer the user a command line interface to the system.

In OS/2 Warp (Intel), due to the similarity of the OS/2 and DOS versions of
these utilities, many of the utilities were coded using the Family API (FAPI)
so that a single binary executable resided on the system.

With the lack of 16 bit OS/2 support in the current release, FAPI is no longer
an option. However, by splitting the utilities into separate executables, the
DOS versions can offer a flexibility that was unavailable in the previous OS/2
releases. Future releases of OS/2 Warp Connect (PowerPC Edition) will
allow DOS only devices such as network redirectors and other block device
drivers. In addition, the operational level of the DOS compatible function can
be improved beyond what real DOS is capable of. The START command, or
the seamless integration with OS/2 and Windows programs can be done in a
superior fashion as compared with similar offerings in the marketplace.

The DOS functionality for the utilities has been taken from PCDOS 6.3.

For this reason, and other architecture considerations, several OS/2 and DOS
commands and utilities are no longer available in OS/2 Warp Connect
(PowerPC Edition). The changes to the available utilities are shown in
Table 2 on page 85.

84 OS/2 Warp (PPC)

Table 2 (Page 1 of 2). Changes to DOS Utilities

Utility Name Comments A
d

d
e

d

D
e

le
te

d

ARABIC A new command to OS/2 Warp Connect
(PowerPC Edition), it provides for ARABIC
character support in VDM sessions.

√

BOOT Since OS/2 and DOS are not available on the
PowerPC platform as native systems there is
nothing to dual-boot to.

√

CACHE Caching has been reimplemented in OS/2 Warp
Connect (PowerPC Edition), making this
command no longer required.

√

CHOICE This command is used in batch files to display a
specified prompt. The prompt provides the
opportunity to choose whether or not the batch
program is to be processed.

√

CRC Gives a Cyclic Redundancy Check (CRC) number
for a filename. The number can be used to
uniquely identify a file. An OS/2 equivalent
function also exists in OS/2 Warp Connect
(PowerPC Edition).

√

CREATEDD New System Management routines with regard
to dumps and dump taking, has removed the
need for this command.

√

DELTREE Allows users to delete whole directory trees
from a DOS command line. There is no
equivalent OS/2 command line function.

√

DRVLOCK Locks or unlocks the specified drive or socket. √

E A full screen text editor for DOS. √

EDLIN This editor was replaced with the DOS E editor. √

HELPMSG2 The help system has been re-worked make this
file redundant.

√

NLSFUNC The internationalization in OS/2 Warp Connect
(PowerPC Edition) has replaced this function.

√

REXX Added REXX support for DOS sessions, similar
to that found in PC DOS 7.0. This change allows
REXX program execution in both DOS and OS/2
sessions in OS/2 Warp Connect (PowerPC
Edition).

√

Chapter 4. OS/2 Functions 85

In addition, due to the lack of FAPI support in OS/2 Warp Connect (PowerPC
Edition), several more utilities are now found in the MDOS directory. These
commands perform the same function as they did previously in OS/2 Warp
(Intel), and have native OS/2 equivalents. They are:

• CHKDSK

• EAUTIL

• PATCH

• UNDELETE

Table 2 (Page 2 of 2). Changes to DOS Utilities

Utility Name Comments A
d

d
e

d

D
e

le
te

d

RC Not supported due to architecture change. √

SETBOOT This utility is part of a multiboot system, which
is not an OS/2 Warp Connect (PowerPC Edition)
Release 1 function.

√

SETVGA Not supported in this release. √

SHARE Added DOS share.exe support to VDM sessions
in addition to support already provided by OS/2.

√

START This utility allows users to start new sessions
from the command shell. This function was
restricted to OS/2 sessions in OS/2 Warp (Intel).

√

SVGA Not supported in this release. √

SYSLEVEL Allows the user to check the syslevel of the DOS
components.

√

VIEWDOC Functionality has been rolled into the VIEW
command.

√

4.2.11 Changes to the MVM DOS Settings
The DOS settings that are used to configure MVM sessions in OS/2 Warp
Connect (PowerPC Edition) are very similar to those available to current
users of OS/2 Warp (Intel). However, several changes have been made, with
new DOS settings appearing in OS/2 Warp Connect (PowerPC Edition), and
others being no longer supported. A summary of these changes are shown
in Appendix A, “Changes to MVM DOS Settings” on page 143.

86 OS/2 Warp (PPC)

4.3 Graphics Subsystem
Graphics Subsystem is a part of OS/2 Warp Connect (PowerPC Edition) that
is responsible for drawing all graphic requests from applications to the
specific hardware output.

The Graphics Subsystem exists in two components of OS/2 Warp Connect
(PowerPC Edition) as shown in Figure 1 on page 2:

• Presentation Services

• System Services

For detail information about Graphical Subsystem in OS/2 Warp Connect
(PowerPC Edition), please refer to document, OS/2 Warp Connect (PowerPC
Edition), Graphical Subsystem, SG24-4639.

A Part of graphics subsystem that resides in Presentation Services are:

• Graphics Engine

• Translation Layer (GRE2VMAN, GDI2VMAN)

Graphics Engine will be discussed in 4.3.2, “Graphics Engine” on page 89.
Translation Layer is a part of GRADD Model that will be described in 4.3.3,
“PM Video Device Driver” on page 92.

The rest of the graphics subsystem that resides in System Services are:

• VMAN

• GRADD

• Softdraw

• Base Video Services

VMAN, GRADD and Softdraw are part of Graphics Subsystem which will be
discussed in 4.3.3, “PM Video Device Driver” on page 92. Base Video
Services will be discussed in 4.3.4, “Base Video Services” on page 98.

4.3.1 Graphics Subsystem Overview
This section will describe the overview of the new model that is specifically
designed for OS/2 Warp Connect (PowerPC Edition).

The Graphics Subsystem of OS/2 Warp Connect (PowerPC Edition) provides
the same functions as OS/2 Warp. There are changes and enhancements
due to Microkernel architecture.

Chapter 4. OS/2 Functions 87

The new video device driver can be written by the developer using Graphics
Adapter Device Driver (GRADD) APIs. GRADD will simplify the device driver
by providing a smaller number of mandatory functions to be implemented.

The structure of OS/2 Warp Connect (PowerPC Edition) Graphics Subsystem
is shown in Figure 12.

Figure 12. OS/2 Warp Connect (PowerPC Edition) Graphics Subsystem

PMGPI The Graphics Programming Interface provides the means used
by applications to do graphic requests. For example, to draw
an arc and/or to write a text at a certain position on the screen,
an API call is made to PMGPI.

PMWIN The Window Manager is responsible for creating, maintaining
and destroying windows on the PM desktop. For example, if we
want to open the pop-up dialog, the mechanism will be provided
by PMWIN.

PMGRE The PM Graphics Engine is the core of PM System. It will be
called by PMWIN and PMGPI on behalf of the applications. It
works very closely with the device driver.

88 OS/2 Warp (PPC)

PDs Presentation Drivers are the device-dependent tools used by
Graphics Engine to map its graphics layout. Presentation
Drivers will be different for every hardware supported.

Softdraw Softdraw stands for Software Drawing for Non-Accelerated
Graphic Operation. Softdraw will be used by Graphics Engine
when it needs to do some raster graphics. Softdraw is needed
to perform raster operations to a linear address space.

GRE2VMAN The GRE2VMAN is also called a translation layer. It is
responsible for reporting current GRADD modes and
capabilities to the Graphics Engine. GRE2VMAN is the first
translation layer that will be loaded if the system uses PM as
the dominant personality.

VMAN Video Manager is the main component of GRADD model that
will be responsible for serializing the communication between
access to the GRADDs and the translation layer. Video
Manager can also call Softdraw for simulation.

GRADD Graphics Adapter Device Drivers provides video support to all
the graphics subsystems which can run on the OS/2 Warp
Connect (PowerPC Edition). A GRADD contains only the
hardware dependent code that is needed to graphic functions
that are common among the different graphics subsystems.

4.3.2 Graphics Engine
This section will discuss GRADD model as a new graphics subsystem model
in OS/2 Warp Connect (PowerPC Edition).

Figure 13 on page 90 shows the detail structure of OS/2 Warp Connect
(PowerPC Edition) Graphics Engine.

Chapter 4. OS/2 Functions 89

Figure 13. OS/2 Warp Connect (PowerPC Edition) Graphics Engine

Graphics Engine (PMGRE) will receive and forward requests for graphic
operations. The capability of Graphics Engine in OS/2 Warp Connect
(PowerPC Edition) is enhanced and some mandatory functions are added.
These enhancements will be described later in this section.

The Device Driver Interface function of OS/2 Warp Presentation Driver has
been changed by GRE2VMAN. The GRE2VMAN is also called a translation
layer in GRADD model. It is responsible as a callpath between Video
Manager (VMAN) and Graphics Engine. It is also responsible for handling
the OS2_PM_ENABLE and DevEscape functions.

GRE2VMAN will then forward the requests to Video Manager (VMAN) module
which will handle serialization and dispatching to the correct device driver.
VMAN is part of Shared Services.

The display device driver for OS/2 Warp Connect (PowerPC Edition) is now
called Graphics Adapter Device Driver (GRADD). GRADD can now perform
the function to the specific hardware via Microkernel but it can also return
RC_SIMULATE which will allow VMAN to call SOFTDRAW for simulation.

90 OS/2 Warp (PPC)

Softdraw fully performs rasterization functions. In the previous version of
OS/2 it can be performed also by Presentation Driver.

Table 3 is the summary of OS/2 Warp Connect (PowerPC Edition) Graphics
Engine Structure.

The GRADD model will benefit the device driver developer since it needs a
small number of functions that need to be implemented before a system can
be fully functional.

The structure of OS/2 Warp Connect (PowerPC Edition) Graphics Engine not
only gives the easier way to enhancing the device driver but it also reduces
the time for maintenance of the Presentation Driver (PD), as shown in
Figure 14 on page 92.

Table 3. A Summary of OS/2 Warp Connect (PowerPC Edition) Graphics Engine

No. Module Task

1. PMGRE Translates PM graphic primitives into PMGRE
independent GRADD primitives.

2. GRE2VMAN Converts the commands and send them to VMAN
using Video Manager Interface (VMI) as a
protocol.

3. VMAN Responsible for serialization of GRADD updates.
commands to GRADD using Graphics Hardware
Interface (GHI) as a protocol.

4. GRADD Performs the operation or returning
RC_SIMULATE to inform that the commands need
to be simulated. VMAN then calls SOFTDRAW.

5. SOFTDRAW Simulates the commands as requested by VMAN
and also fully performs rasterization functions.

Chapter 4. OS/2 Functions 91

Figure 14. GRE/Presentation Driver Design

The Graphics engine is being designed so that a developer can create PD
with minimal effort, and then incrementally add functions that support
specific hardware. In order to achieve this, the new design will:

• Have the GRE manage contextual/state information

• Provide a copy of contextual/state information when the PD hooks
functionality

• Provide a device contextual serialization routine

• Perform rasterization into a linear address specified by the PD

• Provide a set of device support routines

4.3.3 PM Video Device Driver
This section will describe the PM Video device driver model for OS/2 Warp
Connect (PowerPC Edition).

The PM Video device driver model for OS/2 Warp Connect (PowerPC Edition)
incorporates two models:

• Existing PM Video device driver model for OS/2 Warp

92 OS/2 Warp (PPC)

• New model called the Graphics Adapter Device Driver (GRADD) model

OS/2 Warp Connect (PowerPC Edition) will continue to support the existing
full Device Driver Interface, as described in the OS/2 2.1 Presentation Driver
Reference. Existing OS/2 2.X drivers that are being ported to OS/2 Connect
(PowerPC Edition) will not be forced into using the GRADD model, although it
will be the recommended approach for driver developers from now on.

The GRADD model design is a clean and simple architecture, giving
developers the opportunity to write display device drivers very easily and
quickly. The GRADD model is devided into several components that
coordinate the communication between OS/2 and the available hardware.
These components are:

• Translation layers (GRE2VMAN, GDI2VMAN, TAL2VAM, etc.)

• Virtual VMI VDD (VVMI)

• Video Manager (VMAN)

• Graphics Adapter Device Drivers (GRADDs)

• Softdraw

The GRADD model with all its components is shown in Figure 15 on page 94.

Chapter 4. OS/2 Functions 93

Figure 15. GRADD Model

The following lines explain how these components handle a basic operation:

• The translation layer sends VMAN one of the defined Video Manager
Interface (VMI) commands.

• Upon receiving a VMI command, VMAN waits for a semaphore, if
required. This semaphore is used to protect the hardware from more
than one thread accessing a GRADD, and therefore protecting the
hardware at the same time.

• VMAN then sends the hardware command to the appropriate GRADD.

94 OS/2 Warp (PPC)

• After the GRADD has received the Graphics Hardware Interface (GHI)
command which is not mandatory, it has the option of performing the
request operation or returning the request back to VMAN with a return
code of RC_SIMULATE. The RC_SIMULATE informs VMAN that the
command needs to be simulated in software.

• VMAN then calls a component Softdraw to simulate the operation.

The following pages will discuss each component in the GRADD model.

�1� GRE2VMAN is the first translation layer and the first component of the
GRADD model to be loaded and called by the GRE. When GRE2VMAN is
loaded, it calls VMAN′s VMIEntry function with a VMI_CMD_INIT command.
When VMAN receives a command VMI_CMD_INIT for the first time, it loads
the other GRADD model components.

GRE2VMAN.DLL translates the PM graphics′ engine commands into VMI
commands. GRE2VMAN is a passthrough from PMGRE to VMAN. PMGRE
has also been optimized to package the drawing command before calling
GRE2VMAN. This technique reduces the number of calls down to the video
subsystem and helps overall performance.

The GRE2VMAN component will also be responsible for handling the
OS2_PM_ ENABLE and the DevEscape functions.

�2� GDI2VMAN is a Windows translation layer. It translates the Windows
graphics engine (GDI) commands into VMI commands. GDI2VMAN calls
VMAN directly via a virtual device driver called VVMI (Virtual Manager
Interface). Windows support is accomplished this way.

�3� The Virtual VMI VDD (VVMI) component provides only a callpath from
GDI2VMAN to VMAN.

�4� Video Manager (VMAN) is the primary component in the GRADD model,
as shown in Figure 15 on page 94. VMAN is responsible for the following:

• Communication

• Input Management

VMAN is a link between the translation layers and the GRADDs and is used
to serialize the communication between these components.

VMAN relies on a special protocol to receive requests from the translation
layers. The VMAN protocol is called the Video Manager Interface (VMI).
This protocol consists of small set of operations which are individually

Chapter 4. OS/2 Functions 95

identified by a function number. The translation layers communicate to
VMAN via one entry point using export functions.

For input management, mouse movement is sent from the Event Window
Server (EWS) to the Video Manager (VMAN). The mouse event thread calls
VMAN which calls the GRADD to perform a mouse pointer update. The
GRADD has the options to update the pointer or return to VMAN for
simulation. When RC_SIMULATE is returned, then VMAN will simulate the
pointer movement using the regular BitBlt commands.

�5� The Filter GRADD component is shown in Figure 15 on page 94. This
component is optional in the GRADD model. There is no way anyone can
anticipate the changes in the graphics′ hardwares. We must allow a
mechanism to extend the architecture in a manner which takes fullest
advantage of the new hardware.

The Filter GRADD provides a way of modifying the GRADD′s behavior without
rewriting and compiling the GRADD. A Filter GRADD is placed between
VMAN and the GRADD. This component provides now an extra link to the
GRADDs. This is called chaining.

The GRADD model can be extended by using the VMI_CMD_EXTENSION
command. An extension can be written to pass its own defined commands
to a GRADD or a new GRADD can be written to handle the additional support
for a given extension.

�6� The GRADD as shown in Figure 15 on page 94 is a hardware specific
device driver. GRADDs contain only a small set of common functions, which
are designed to act as building blocks for the larger more complex
operations. These complex operations are required by the GRE.

GRADDs are the only components in the model that have direct access to the
hardware. A GRADD contains only the hardware specific code to exploit the
accelerated features of a specific graphics adapter. For most developers, the
GRADD will be the only code that needs to be written.

GRADD relies on a special protocol to receive requests from VMAN. The
GRADD protocol is called Graphics Hardware Interface (GHI). A GRADD
receives all of the operations from VMAN via a single export function called
HWEntry. HWEntry is the exact same as the VMIEntry.

�7� Softdraw is the component in the GRADD model, as shown in Figure 15
on page 94, that, provides the Software simulation. Softdraw consists of a
generic graphics library to be used by VMAN and the system for software

96 OS/2 Warp (PPC)

simulations. Softdraw exports two functions called SDBitBlt and SDLine that
are used by VMAN to simulate in software bitblt and line operations,
respectively. Softdraw can draw the bits directly into the bitmap, if given a
pointer to a linear address, a VRAM bitmap or system bitmap. The Softdraw
component will support rasterization concepts.

Software simulation allows a developer to write the driver in incremental
stages, rather than writing the entire driver up front. Once the mandatory
functions are completed, a developer can use the software simulation to
simulate the non-mandatory functions. When the non-mandatory functions
are coded to exploit the capabilities of the graphics adapter, the result can
be compared to the result of the software simulation. This is a way for the
developers to assure that their PM drivers look consistent to drivers written
for different hardware platforms.

The PM Video Device Driver model for OS/2 Connect (PowerPC Edition) is
shown in Figure 16 on page 98. Note the Graphics Engine will either
dispatch drawing requests to a driver coded to the existing DDI interface or
to the new driver coded to the GRADD model via the Video Manager(VMAN)
interface.

Chapter 4. OS/2 Functions 97

Figure 16. OS/2 WARP Connect (PowerPC Edition) PM Video Device Driver Model

4.3.4 Base Video Services
The Base Video Subsystem is comprised of a shared module (VIDEOPMI)
which communicates to/from the protected mode video device driver
(BVHSVGA - OS/2 Warp Connect (PowerPC Edition)), as well as the virtual
video device driver (VSVGA - Multiple Virtual Machine).

It is the part of Presentation Manager which maintains compatibility with text
mode application and graphical system in protected mode. The discussion of

98 OS/2 Warp (PPC)

Base Video Subsystem in OS/2 Warp Connect (PowerPC Edition) will deal
with the design and function of VIDEOPMI.

VIDEOPMI is a neutral subsystem which provides services to:

 1. BVHSVGA for OS/2 full-screen sessions

 2. BVHWNDW for OS/2 windowed session

 3. VSVGA for VDMs

 4. VIO API for 32-bit programming interface

 5. Base Video Subsystem

All these callers will be discussed separately in 4.3.4.1, “Text Mode in OS/2
Warp Connect (PowerPC edition)” on page 101. Virtual Video Device Driver
which provides DOS Full screen and windowed support will be discussed in
4.3.4.2, “ Virtual Video (VVIDEO)” on page 103. VIDEOPMI will be called by
GRADD when an application requests for example, drawing a line in a OS/2
windowed. The structure is shown in Figure 17.

Figure 17. VIDEOPMI Accessed from GRADD

Chapter 4. OS/2 Functions 99

The design of VIDEOPMI is built around information contained in the
Protect-Mode Interface (PMI) file. It is based on the SuperVGA Protect-Mode
Interface (SVPMI) VESA standard.

The PMI file will contain data and commands necessary to provide support
for modes beyond VGA in a non-BIOS environment. Adapter manufacturer or
display device driver provider is responsible for providing PMI file.

The main goals of VIDEOPMI are:

• To centralize all of the setmode related services

• To provide a consistent interface which is not dependent on any BIOS
services

• To facilitate multiple adapter support and dynamic video configuration

In its implementation, VIDEOPMI will be called by the callers. All functions
will request one entry point. All calls are then routed to the appropriate
routine. VIDEOPMI will not hold any instance data, all data must be
maintained by the caller. All data maintained by VIDEOPMI will be allocated
dynamically as shared data during initialization. And since the data will be
shared, it will need a handle which is the base address of data allocated
during initialization. This handle will be notified and referenced to every
caller.
Initialization of VIDEOPMI takes the following four main steps:

 1. Allocating and initializing internal memory management routines

 2. Loading and parsing of the PMI file

 3. Setting up addressability to code and data

 4. Notifying the Virtual Video Driver of entry points and handle values

The most important file in VIDEOPMI is Protect-Mode-Interface file. This file
resides in directory \OS2. The first release of OS/2 Warp Connect (PowerPC
Edition) provides 3 PMI files: WD_90C24.PMI, S3_864.PMI and S3_928.PMI.
These files are readable and will be parsed by VIDEOPMI Initialization and
put in shared memory as an internal linked-list.

The PMI file is responsible for:

• Describing a graphics adapter to the OS/2

• Providing means to set, save and restore video modes in Protected-Mode

• Providing parameters for the adapter virtualization in multiple DOS
session.

100 OS/2 Warp (PPC)

The PMI language and its interpreter can facilitate dynamic hardware
configuration, which includes port remapping, adding or removing an adapter
and its PMI definition, changing the attached display and multiple instances
of the same video hardware. It also facilitates different refresh rate support
and programming of external video-support chips, such as clock chips or
smart DACs. PMI file should list default adapter port configuration and mode
sections which are capable of supporting different refresh/monitor setups.
Monitor configuration, port mapping, and selection of the adapter instance
are performed by components other than VIDEOPMI.

The PMI file can list one or more adapter description starts with its hardware
section, followed by IdentifyAdapter and a number of support sections and a
list of all available modes with the actual hardware sequence required for a
successful mode set from any hardware state of the adapter. If multiple
adapters are listed, support sections for each adapter are considered private
and cannot be referenced from other adapter descriptions.

PMI files are to be provided by the video chip or adapter manufacturers, or
by the providers of the display drivers. The file should be part of the video
adapter installation kit, either as a pre-manufactured flat file or one just
created by the OEM′s installation utility. OS/2 Warp Connect (PowerPC
Edition) Installing utility will add the file into the OS2.INI file with its full
pathname and with adapters OEMString identifier.

PMI services for a recently installed adapter are available as soon as the
hardware described in its PMI file is installed and available. The adapter is
considered available if IdentifyAdapter section in the PMI file returns true.

4.3.4.1 Text Mode in OS/2 Warp Connect (PowerPC edition)
The need for the VIO and Keyboard calls has not gone away, and to protect
legacy applications they must continue to be supported. There also remains
the needs for a simple program video and keyboard interface. While PM
gives a rich graphical interface, it is difficult to write a simple PM program
just for simple requirements for keyboard and screen output.

OS/2 Warp Connect (PowerPC Edition) has to provide a simple text mode
interaction. In OS/2 Warp Connect (PowerPC Edition) there is a legacy of VIO
APIs and in DOS there is a legacy of BIOS and direct hardware I/O.

OS/2 Warp Connect (PowerPC Edition) provides base video support by
implementing 32-bit versions of most of the OS/2 1.x VIO calls, while for DOS
applications Multiple Virtual Machine (MVM) provides textmode support
using VDDs. More discussion on MVM can be read in 4.2, “The MVM
Environment” on page 72.

Chapter 4. OS/2 Functions 101

Since the current APIs are 16 bit only, binary compatibility with existing
applications is not possible. However, in most cases it is possible to move
to the 32-bit VIO APIs by doing only a recompile.

The concept in OS/2 Warp Connect (PowerPC Edition) provides a simple
graphic interface based on a generic monospaced rectangular text window
where each character has an attribute. This can be implemented on any
hardware base. OS/2 Warp Connect (PowerPC Edition) has an integrated
OS/2 Base Video Handler and Presentation Manager so that all user
interaction in OS/2 goes through Presentation Manager.

Full screen sessions are in fact just PM Windows with no border. PM can
then decide whether to use a graphical mode or hardware text mode to
actually display them. Both DOS and OS/2 sessions are then movable
between windowed and full screens. This requires that the font be scaled to
match the size of the physical screen (unlike the normal maximize).

The OS/2 text mode support (OS2CHAR) provides a common set of video
code to implement both full screen and windowed VIO. OS2CHAR is a
component of the OS/2 Presentation Manager which processes input for OS/2
sessions. OS2CHAR is maintained by a per session logical video buffer.

The base video handlers are implemented as VIDEOPMI which is
documented in 4.3.4, “Base Video Services” on page 98. These are called
from the OS/2 and MVM to do mode set, save, and restore.

The BVS (Base Video Services) and BVH (Base Video Handler) layers no
longer exist. Most of the functions have been moved to VIDEOPMI, and the
rest is moved directly into the OS2CHAR implementation. The consequences
are that all video presentation drivers must support the small number of
AVIO calls. In OS/2 Warp Connect (PowerPC Edition) implementation, these
functions are implemented by the graphics engine.

The structure of Text mode processing in OS/2 Warp Connect (PowerPC
Edition) will be basically the same as Figure 17 on page 99 since OS2CHAR
is only the part of PM. The more detail structure including MVM (DOS)
module is shown in Figure 18 on page 103.

102 OS/2 Warp (PPC)

Figure 18. OS/2 Warp Connect (PowerPC Edition) Text Mode

Event Server is a part of Event and Window Services (EWS). It runs as a
thread which is responsible for processing the event input port. Event input
port is a microkernel port which receives messages from the interrupt logic
for the keyboard and mouse devices. More discussion on EWS could be
seen in 3.2, “Event and Window Services” on page 32.

Return codes from the VIO calls are changed from 16-bit API (USHORT) to
32-bit API (APIRET) and most USHORTs in the parameter lists have been
changed to ULONG.

4.3.4.2 Virtual Video (VVIDEO)
Multiple Virtual Machine (MVM) Environment is the part of the OS/2 Warp
Connect (PowerPC Edition) operating system that is responsible for providing
the DOS/WINDOWS/DPMI program compatibility. Virtual Video (VVIDEO) is
one component of MVM that is responsible for routing all the video requests
to hardware.

The VVIDEO component processes INT 10h requests for video events from
the v86 thread and services them. Virtual 8086 mode is historically a
component of 80386 intel chip which enables system software to emulate an
8086 environment with a virtual machine. In PowerPC, it will use 8086
Emulation Component (EM86) which is part of MVM.

The VVIDEO exists in three parts:

• I/O Thread

• INT 10h Emulator

Chapter 4. OS/2 Functions 103

It hooks interrupts generated by the DOS application. It also requests
query or set the video state from the v86 thread and services them.

• Port Handler Routines.

It services In and Out requests for the video ports. It also hooks all
relevant video ports.

The VVIDEO consists of the following components:

 1. Boot-time Initialization

This component performs the global initialization at the MVM server boot
initialization time and functions as follows:

• Initializes the global data structures

• Registers the user handler VVCreate with the MVM server and must
be called every time a new VDM is created

 2. Client Creation-time Initialization (VVCreate)

The client creation-time initialization component is called every time a
new virtual DOS machine (VDM) is created. The VVCreateVM function is
called in the context of the newly created VDM and does the following:

• Installs INT 0x10 hook handler, VVINT10Hook

• Installs video port handler, VVIOHookHandler for the device
dependent ports

• Communicates with the SVGAPMI PNS to gain port rights to the video
hardware

 3. Software Interrupt and port I/O emulation

Instruction emulation is provided through the Instruction Set Translator
(IST). IST is responsible for emulating Intel instructions on non-Intel
machines, such as the PowerPC. It provides 386 ring 3 protected mode
and real mode. IST is the only module that understands Intel
instructions, and provides services that the rest of MVM depend upon to
run DOS and Windows applications on a PowerPC. I/O port requests will
be passed on to virtual video provided that the virtual video driver has
called VDHInstallIOHook. Conversion of Intel based port I/O to the
appropriate memory mapped load-and-store will accomplished in the IST.

Figure 19 on page 105 provides a general view of the virtual video device
driver architecture.

104 OS/2 Warp (PPC)

Figure 19. VVIDEO Internal Architecture

For optimal performance and compatibility, the Video VDDs support
full-screen operation. For convenience, an option appears on the VDM
system menu to convert the VDM from Windowed mode to Full-screen mode
and back.

The Video VDDs support full-screen operation by doing the following
operations:

• Registering foreground/background screen-switch notification hooks with
the VDM Manager

• Utilizing the save/restore video buffer services which is provided in the
PNS of base video

• Installing I/O hooks to shadow key video port accesses

• Mapping physical video memory into the appropriate video address
space

• Coercing text mode fonts to match the currently selected codepage

• Providing pointer drawing services to the mouse VDD to define, draw and
erase pointer images

Chapter 4. OS/2 Functions 105

4.3.4.3 Virtual Windows (VWIN)
Virtual Windows (VWIN) is a virtual device drive that allows a Windows
program to run on the OS/2 2.x desktop, side by side with OS/2 applications
and other Windows applications. It is the link that passes messages from
one GUI to another so that both environments can know about and adjust for
each other.

In the first release of OS/2 Warp Connect (PowerPC Edition), seamless will
work the same, but the components will be implemented differently to fit the
OS/2 Warp Connect (PowerPC Edition) Architecture.

In OS/2 Warp Connect (PowerPC Edition), VWIN will provide a number of
services to facilitate the communication between Win-OS/2 and the
presentation task. Win-OS/2 will use INT 66h to access it. VWIN will exist in
each VDM and do the following tasks:

• Receive all messages from presentation task

• Send all Win-OS/2 messages

The presentation task will use APIs, generated with MIG (Message Interface
Generator), to send and receive messages from Win-OS/2.

The exchange of messages between the VDM task and the presentation task
represents a peer-to-peer form of client/server communication. At one point,
the VDM may be the server, handling messages sent from another VDM or
the presentation task. At another point, the presentation task may become
the server, handling requests from the VDMs.

In OS/2 Warp Connect (PowerPC Edition), WinShield will call into VWIN as it
does in OS/2 Warp by executing an INT 66h, causing the Interrupt Handler to
execute the VWIN entry point function for Win-OS/2. VWIN in VDM needs
send rights to the port of VWIN in presentation task in order to send
messages.

To receive a message, a stub routine will exist that listens at VWIN′s receive
port, waiting for incoming messages. Multiple threads will exist to receive
the messages. They are threads to receive shield messages, error
messages and clipboard/DDE messages. Once a message arrives, it will be
placed on a local message linked list. WinShield can then access the list
through an INT 66h call to VWIN.

106 OS/2 Warp (PPC)

The VWIN Central Services Task will be started by the presentation task VWIN
code. The following list are the tasks of VWIN Central Services Task:

• Handles all clipboard/DDE requests

• Holds the master clipboard

• Contains a list of all VDMs and the presentation task

• Routes the broadcast messages from the VDM or Presentation Task
using a list of all VDMs and the presentation task

Overall message flow of OS/2 Warp Connect (PowerPC Edition) can be seen
in Figure 20.

Figure 20. Overall Message Flow of OS/2 Warp Connect (PowerPC Edition)

When the presentation task VWIN initializes, it creates the VWIN
Central Service Task. It provides it with a send right to the
presentation task VWIN port.

The MVM Server creates the VDM. It passes to the new VDM a send
right to VDM Central Services Task.

Chapter 4. OS/2 Functions 107

When the VDM VWIN initializes, it will send its information, along with
a send right to itself, to the VWIN Central Services Task.

The VWIN Central Services Task then passes the VDM VWIN send right
to the presentation task VWIN.

The presentation task VWIN then passes a send right to its port to the
VDM VWIN.

In OS/2 Warp Connect (PowerPC Edition), the new video engine/video
manager (VMAN) will provide the services found in the VWIN display driver
routines. More discussion on VMAN could be seen in 4.3.3, “PM Video
Device Driver” on page 92.

4.3.5 Fonts
This section will describe the font support of OS/2 Warp Connect (PowerPC
Edition).

OS/2 Warp Connect (PowerPC Edition) will support generic fonts and can be
used by all presentation drivers. The generic font can either be an outline or
image font. The outline font technology supported depends on the Intelligent
Font Interface (IFI) font drivers that are installed on OS/2 Warp Connect
(PowerPC Edition).

The following figure shows font support for OS/2 Warp Connect (PowerPC
Edition).

108 OS/2 Warp (PPC)

Figure 21. OS/2 Warp Connect (PowerPC Edition) Font Support

OS/2 Warp Connect (PowerPC edition) will support the following font formats
as shown in Figure 21.

• IBM UNI font-file format

• IBM Combined font-file format

• OS/2 PM font-file format

• Adobe Type 1 font-file format

• Adobe Composite font-file format called NCF format

• Truetype

Chapter 4. OS/2 Functions 109

Glyph Fonts are applied to a table called a code page. A code page
has several entries which contain different symbols. These
symbols usually include letters, numbers, and special
characters. Each of these symbols or images in a code page is
called a glyph. Each entry in the code page is called a code
point. A code point is an index into a code page to identify a
glyph. For example if you take an ASCII code page, you would
notice code point X′31′ would have a glyph for the character ″1″
defined in it.

Glyphlist The glyphlist name is the name that identifies a set of character
glyph names and font index sequence of the character glyph
set. All physical fonts are associated with a glyphlist name.

Glyph Index Translation
When an application draws a text string, the graphics engine
parses the text string using a code page associated with the
device context of the target device and translate it into font
indices or indexes for the physical font. This is called Glyph
Index Translation.

OS/2 Warp supports only the character glyphs which are defined in the
PM383 glyphlist at present. Six more glyphlists have been added to OS/2
Warp Connect (PowerPC Edition). These added glyphlists enable the
graphics engine to support new country and new language fonts.

OS/2 Warp Connect (PowerPC Edition) supports the following glyphlists:

• PM383

383 Character glyphs are defined in this glyphs are defined in this
glyphlist.

• UNICODE

Consists of the UNICODE specification adopted by the International
Organization for Standardization (ISO) as ISO 10646.

• SYMBOL

Font specific encoding used to define a symbol character set.

• PMJPN

PM383 extension for the Japanese language.

• PMCHT

PM383 extension for the Traditional Chinese language.

• PMKOR

110 OS/2 Warp (PPC)

PM383 extension for the Korean language.

• PMPRC

PM383 extension for the Simplified Chinese language

Graphics engine fonts: The graphics engine (GRE) reads and parses the
following font formats directly:

• IBM Combined font-file format

This a new format being supported by OS/2 Warp Connect (PowerPC
Edition), which will be described later in this section.

• OS/2 PM font-file format

This is the OS/2 2.1 font-file format which is designed for small character
sets and will be supported.

ATM IFI font driver font: The ATM IFI font driver supports the following font
file formats:

• Adobe NCF font-file format

This is the Adobe new composite font format designed for small and
large character set fonts.

• Adobe Type 1 font-file format

This is the Adobe Type 1 font file format designed for small character set
fonts. The Object Font Metrics (OFM) file format was enhanced in order
to support the UNICODE glyplist.

Raster IFI font driver font: The following font-file format is supported by the
Raster IFI font driver.

• IBM UNI font-file format

The Uni font-file format is designed for image fonts which have large
characters set in the font file such as the Double Byte Character Set
(DBCS) and the UNICODE encoding. The Uni font-file format is a super
set or extension format of the OS/2 2.1 PM font-file format.

Trutype IFI Font Driver Font: The Trutype IFI driver font is a new font driver
that is developed to support the widely available true type fonts in the market
place. The driver font supports the following font file format:

• Truetype font-file format

The following table is a summary of font format and glyplist support for OS/2
Warp Connect (PowerPC edition):

Chapter 4. OS/2 Functions 111

Font Cache: The graphics engine implements character glyph (bitmap)
caching for IFI font driver fonts.

The caching was designed to work for large characters set fonts with
reasonable performance, hit ratio point of view. The following points were
considered as the criteria for handling multiple large characters set font for
the caching:

• High hit ratio for the given buffer size

• Linear search must be prohibited

• Fragmentation - glyphs have different sizes

Intelligent Font Interface (IFI): OS/2 Warp Connect (PowerPC Edition)
graphics engine enhances the Intelligent Font Interface (IFI) in order to
support raster IFI font drivers, additional glyphlists, etc. This IFI driver
version will be defined as IFI version 2.1

Device Specific Font: A presentation device driver can provide device
specific fonts for the built-in fonts in the hardware such as a printer or a
display adapter card. For the device specific font the responsibility of the
glyph index translation resides at the device driver. Device drivers must
recognize which code page is associated with the text string and to the
proper conversion to the font indices of the device specific font.

OS/2 Warp Connect (PowerPC Edition) Font object design: As we enter new
markets with new character set requirements or attempt to support

Table 4. OS/2 Warp Connect (PowerPC Edition) Font Format Support

Font-file formats

Glyphlists

P
M

3
8

3

U
N

IC
O

D
E

S
Y

M
B

O
L

P
M

JP
N

P
M

C
H

T

P
M

K
O

R

P
M

P
R

C

IBM Uni Font-file format X X X X X X X

IBM Combined Font-file Format X

OS/2 PM Font-file format X X

Adobe Type 1 Font-file format X X X

Adobe NCF Font-file format X X X X X X X

Truetype X

112 OS/2 Warp (PPC)

multilingual text, we are facing the problem of building new UGLs or
combining and using an existing one.

OS/2 Warp Connect (PowerPC Edition) uses a new model as shown in
Figure 22 on page 114. An alternative approach was taken, this design
supports font objects which maintain the information about the character sets
they support. Each font object will have an associated DLL which maps the
ASCII or UNICODE character encodings to the character glyph definition
supplied by the font. This means that we remove the notion of the system
maintaining a single list of supported characters, the UGL.

The advantage of this are:

 1. The dependencies of the GRE on font encodings are isolated.

 2. New character sets can easily be added through new fonts.

 3. Multilingual text can now be supported through the UNICODE mapping
support.

Chapter 4. OS/2 Functions 113

(PowerPC Edition)

Figure 22. New Model for Font Architecture Support Under OS2 Warp Connect

The new model for OS/2 Warp Connect (PowerPC Edition) is shown in
Figure 22. The glyphlist associated with the font is identified by the font
header. This could be SYMBOL, UNICODE, PM383, PMJPN or some other
name. Current bitmaps fonts have no header and are assumed to be PM383
bitmap fonts. The graphics engine (GRE) will use a table to associate the
font with a DLL. The DLL will be associated with the glyphlist name.

114 OS/2 Warp (PPC)

This DLL supports three functions:

• Install

• CodePointToGlyph

• UnicodeToGlyph

The CodePointToGlyph and UnicodeToGlyph functions are used to do the
mapping from either an ASCII codepoint or UNICODE to a 16 bit glyph index,
which represents the appropriate character.

The font glyph index is used to query the intelligent font interface (IFI) driver
of the font to retrieve the rasterized character bitmap. The install function is
used to set up the mapping tables needed for the conversions and also
establishes some of the font characteristics. Some of the values established
at this point are:

• Number of glyphs in the font

• Lowest value of the font index

• Highest font index value

• Set of index ranges which contain the entire set of glyphs in the font

The Graphics Engine (GRE) deals with two kinds of fonts:

• Engine Fonts

An engine font is a bitmap font with a defined structure. The engine fonts
used today support only the characters in PM383. A table 383 entry is
built with entry, size of the character and an 64k heap pointing to the
character bitmap definition. This table is part of the interface to the
Graphic Engine and is used by the graphic device drivers.

• IFI Fonts

An IFI font is a font, outline or bitmap, and is accessed through a special
interface called an IFI driver. The IFI driver accepts 16 bit glyph index
and returns a rasterized image. The Graphics Engine creates a fake
representation of an engine font for each IFI font that is loaded. As
characters are rasterized, the entries in the header field are filled in.
The display devices are not aware of the differences between engine
fonts and IFI fonts. This mechanism is also a simple cache mechanism
for small fonts. Large fonts use a secondary cache to store the
rasterized bitmaps. Just before the display device is called to render the
characters, the bitmaps are copied to the fake engine font format. In this
way the display devices are also unaware of the difference between the

Chapter 4. OS/2 Functions 115

small and large fonts, however this will have a impact in performance for
large fonts.

The engine font, Font Transfer Area (FTA) is supplied to the display
drivers. This font will be used for existing support for PM display drivers.

The following algorithm is used as shown in Table 5. This is an example
where Unicode encoded text and ASCII encoded text are used.

This algorithm, together with the font objects, will support multiple glyphlists
and Unicode in an efficient manner.

IBM Combined Font: Combined font originated from the limitation of OS/2 2.1
PM Universal Glyph List (UGL), which makes it difficult to support new
languages and countries. OS/2 Warp Connect (PowerPC Edition) uses a
Combined Font font architecture to overcome this limitation.

The following sections will show the design and concept and also the
implementation of the combined font in the graphics engine.

Table 5. Encoding Font Algor i thm

No Description

1. Unicode or ASCII text is passed to the GRE to be rendered in a
Presentation Space (PS).

2. Identification of the current logical font for the PS will take place.

3. If ASCII text is passed get the current PS codepage.

4. Next the font′s UnicodeToGlyph or CodePointToGlyph function will be
called, which will return a font index for each character in the string.

Either the native glyphlist of the font object is Unicode, which will
result in a no operation, or

The font object will convert from Unicode to the native encoding, that
is PM383.

5. Next the font cache will be searched for the bitmap.

If it is a engine font then the bitmap will always be there, or

If it is a IFI font, the bitmap may not be available.

6. If the bitmap is not available, approach the IFI driver for the glyph,
and place it in the cache.

7. Copy the bitmaps to the Font Transfer Area (FTA), if required, this is
not required if the font caching mechanism uses the FTA directly.

8. The graphics driver is then called for the PS to render the bitmap.

116 OS/2 Warp (PPC)

IBM Combined Font A Graphics engine font that is dynamically created by
combining several physical fonts. A application can
select and use the font in the same way as a physical
font.

A IBM Combined font consists of the following font entries:

• Physical Font Entry : A physical font entry is a Graphics Engine heap
representing a Graphics Engine generic font. This contains information
such as font metrics, glyphlist name. It uses count and pointers to
retrieve character glyph data and character attributes.

Physical font entries are created when a new font is installed through the
GreLoadFont function, and will be destroyed when it is unloaded through
the GreUnloadFont function.

Physical font entries are stored in two different places in the Graphics
Engine heap, which are in a global shared heap to be accessed by all
processes, or in an instance heap to be accessed by only one process.
The physical font entries for private fonts are placed in the instance
heap, and the ones for public fonts are placed in a global shared heap.

• Combined Font Entry: Combined font entry is a binary representation of
IBM Combined font-file format and is located in the Graphics Engine
heap. The combined font entry includes font metrics for the combined
font, an array of component font entries, use count and a priority list of
component fonts. The component font must be a public font. The priority
list of component fonts will be used to choose a component font from the
UNICODE glyph index that is translated from the text string.

 Note

The only supported glyphlist for combined font is UNICODE.

Component fonts may have different glyphlist. In this case, the graphics
engine will do the necessary conversion from UNICODE indices to indices
of the appropriate glyphlist, in order to retrieve a character glyph from
the component font.

There are two passes in the process of the glyph index translation of a
combined font. The first pass is to translate from code points to indices
of the UNICODE glyphlist. The second pass is to translate the indices of
the UNICODE glyphlist to the indices of the component font glyplist. The
indices returned from the second pass will be used to extract font images
and attributes from the component font file.

Chapter 4. OS/2 Functions 117

The combined font points to physical font entries in the graphics engine
heap, the graphics engine must assure that all component fonts are
useable for the combined font. Therefore, all physical fonts installed as
public fonts must be loaded prior to loading the combined font.

A combined font entry will be created when an IBM combined font is
installed through the GreLoadFont function, and will be destroyed when it
is unloaded through the GreUnloadFont function.

Combined Font-File Creation Tool .

IBM provides a font creation tool for users and national language developers
for creating a IBM combined font easily.

New Graphics Engine APIs

The following new APIs are implemented by the graphics engine.

• GreRealizeString

• GreQueryCharOutline

• GreQueryCharMetricsTable

• GreQueryCodePageObject

4.4 Graphics Subsystem Summary
From the user point of view, there are no major changes in Graphical User
Interface. Users will see the same desktop and will use the same Workplace
Shell as they did in OS/2 Warp.

The OS/2 Warp Connect (PowerPC Edition) Graphical Subsystem has been
designed as a modular system to accommodate the fast growing hardware
changes. This modular design enhances the ability for the developers to
maintain and develop new code for future releases of OS/2 Warp Connect
(PowerPC Edition).

The summary of Graphics Subsystem will be shown in Table 6 on page 119.

118 OS/2 Warp (PPC)

Table 6. A Summary of Graphics Subsystem

Item Description

GRE Some functions have been moved from Presentation Driver
to Graphics Engine. It will be easy to maintain the
Presentation Drivers.

Graphics Engine will only map the device-independent
output into specific device output and GRE2VMAN will act
as a Device Driver Interface.

PMVDD Uses a GRADD model that is modular in design to
accommodate and assist driver developers to write drivers
in stages.

Base Video
Services

OS/2 Full-Screen is only a part of the PM windowed
application without the border. OS/2 sessions are swapable
between windowed and full screen.

OS/2 Warp Connect (PowerPC Edition) will not use Base
Video Handler. All the functionality has been moved to
OS2CHAR and VIDEOPMI.

Fonts New font-file formats have been added with more character
glyphs support for these new formats.

Uses a combined font architecture whereby new languages
and countries can be added easily.

4.5 Printing Services
Printing Services in the OS/2 Warp Connect (PowerPC Edition) operating
system provide functions equivalent to those that are currently available in
OS/2 Warp (Intel). The requirements that the printer server (spooler) had to
meet to provide this support include:

• Allow printing from both OS/2 and MVM (DOS).

• Print using the same interfaces as those used for display.

• Print data which is already in the print stream.

• Allow for serialization and prioritization of print jobs.

• Provide an application interface to allow attributes to be specified for
print jobs.

• Allow printing from current OS/2 and Windows applications.

The most obvious change in the printing system when comparing it to OS/2
Warp (Intel) is that, as with the other components of the architecture, the IBM

Chapter 4. OS/2 Functions 119

microkernel is used when accessing hardware devices. Figure 23 on
page 120, shows the utilization of the IBM microkernel when an application
is printing.

Figure 23. Printing in OS/2 Warp Connect (PowerPC Edition)

The components of the printer server are discussed is the following sections.

4.5.1 Spooler Objects
The OS/2 Warp Connect (PowerPC Edition) spooler function is provided to the
system by a number of objects. Mostly these objects have been moved
across from the OS/2 Warp (Intel). The spooler objects available in OS/2
Warp Connect (PowerPC Edition) are outlined below.

120 OS/2 Warp (PPC)

4.5.1.1 Logical Printer (Queue)
The logical printer matches the current OS/2 print queue. The user may
have as many of these as they desire.

There may be multiple Print Drivers and Port Drivers associated with a
Logical Printer. However, at the time a spool job is opened, one of them
must be selected. Normally, the default Print Driver and Port Driver are
used.

4.5.1.2 Print Driver
The print driver matches the current OS/2 print driver object. The print
driver determines the Printer Description Language used (for example,
Postscript, PCL5, Dot Matrix).

The print driver has a set of attributes. These are specified on a per printer,
or per job basis (print properties or job properties). Many attributes can be
specified in either place.

4.5.1.3 Port Driver
The port driver is a high level controller for data going across a port. It
provides a high level interface to the physical device. The port driver
handles bi-directional interface with the printer and maintains the current
state of the printer.

In OS/2 Warp (Intel), the port drivers were significantly enhanced to support
the needs of bi-directional communications. The function of the port driver
has been implemented in OS/2 Warp Connect (PowerPC Edition). However,
bi-directional printer communications will not work since the required device
driver support is not yet available.

The persistent state of the port is kept as a set of attributes to the port driver
in the registry. Normally, this data is only accessed by the spooler.

4.5.1.4 Spool Job
The spool job is created when an open is done of the logical printer. The
spool job inherits the attributes from the logical printer, print driver and port
driver. Many of these attributes may be specified on an individual job basis.

Chapter 4. OS/2 Functions 121

4.5.2 Printing from DOS and Windows
There are several methods of printing from DOS and Windows:

• Use the Windows Print interfaces which print using the GDI APIs using
the same method as is used for display.

• From DOS, copy a file to a port using the copy of print command, or an
application which opens the port as a file. DOS selects the logical printer
associated with that port.

DOS printing is done by have the OS/2 spooler perform a DosFSAttach in
place of the parallel port for logical devices supported by the spooler
(LPTx).

The MVM Server provides a virtual device driver (VLPT) which handles
the DOS side of this communication.

4.5.3 Printer Driver Support
OS/2 Warp Connect (PowerPC Edition) provides support for the following
printers. All of the drivers are 32 bit C presentation drivers which are source
compatible between OS/2 Warp (Intel) and OS/2 Warp Connect (PowerPC
Edition). Unlike the current IBM printer drivers which are already 32 bit C
drivers, most non-IBM print drivers will not be easily recompiled because
they are written in 16 bit assembler. However, this list includes almost all of
the following PC attached printers:

• IBMNULL (passthru)

• PostScript (level 1, level 2)

• HP LaserJet (III, 4)

• PPDS (4019, 4029)

• Omni driver (HP DeskJet, HP PaintJet, Epson)

4.6 System Management.
One of the goals for OS/2 Warp Connect (PowerPC Edition) is to learn from
past experiences and create a product that can be supported in the field in a
timely and cost effective manner.

In OS/2 Warp (Intel) kernel level debugging was used to isolate the failures
that were encountered in the system. The OS/2 Warp Connect (PowerPC
Edition) design depends instead on the serviceability-oriented
instrumentation as the primary means of debugging problems. This is a

122 OS/2 Warp (PPC)

radical departure from the traditional debug techniques, and has resulted in
a system that can be managed in a more intelligent fashion.

Additionally, since much of the systems management architecture is intended
to be shared with OS/2 Warp (Intel), the serviceability of the OS/2 Warp
Connect (PowerPC Edition) enhancements will eventually be incorporated
within the OS/2 Warp (Intel) platform.

4.6.1 Installation
As mentioned in section 5.2, “Feature Install” on page 131, the OS/2 Warp
Connect (PowerPC Edition) install process treats all system components as
features. Based on this philosophy, the system management component is
installed as a base feature.

The system management install process installs all of the system
management components and consists of 3 parts:

• Module Install

• Configuration Information

• Workstation identification information

The installation, by default, places the systems management components
into the OS2SYSTEMRAS directory of the boot drive. Once completed, the
following ICONS will be available to the end user from the Systems
Management folder:

• Syslog Display - Utility to display error log details.

• FFST Configurator - First Failure Support Technology (FFST) configuration
utility.

• Dump Formatter - PMDF Dump formatter.

• Trace Formatter - Utility to display trace entries.

• SYSLEVEL - Utility to query system configuration.

• System Dump Configurator - System Dump configuration.

• DMI MIF Browser - Utility to display Vital Product Data (VPD) information.

Chapter 4. OS/2 Functions 123

4.6.2 System Management Initialization Process
In order to obtain the necessary information or data for systems
management, OS/2 Warp Connect (PowerPC Edition) contains a system
management initialization process called SMSTART. The SMSTART module
is invoked by the OS/2 Server during startup of the OS/2 Warp Connect
(PowerPC Edition) operating system.

SMSTART is a simple program that provides the following services to the
system:

• Starts a thread that handles the enablement part of the system dump.

• Creates a thread for each of the following processes and starts them in
the following order:

− First Failure Support Technology (FFST) microkernel service daemon

− Desktop Management Interface (DMI)

− Error log daemon

− Trace daemon

− FFST daemon

These process are continuously monitored and restarted if they die.

If the SMSTART process experiences problems in starting one of the
processes, other than the error log daemon, then it will append the reason to
the error log. If SMSTART is unable to start the error log daemon, or is
having problems starting its own process, then it will log the error to an
internal file (SMSTERR.DAT) on the boot drive, and in the OS2SYSTEMRAS
directory.

4.6.3 Serviceability Tools
In OS/2 Warp Connect (PowerPC Edition), the serviceability tools are
programs that have been supplied with the system in order to provide
system management capabilities. The serviceability tools belong to several
different classes, each of which provides a different level of system
management information to the user.

The serviceability tools architecture is layered to provide a hierarchy of tools:

• First Failure Data Capture (FFDC)

− Error Logging

− First Failure Support Technology (FFST)

124 OS/2 Warp (PPC)

• Data Browsing

− Event Tracing

− Resource Monitoring

− Performance Monitoring

• System Dump

• Low Level Remote Debug

Information on how to use the various tools described in this section is found
in the on line book Systems Management User′s Guide, in the Systems
Management folder.

4.6.3.1 First Failure Data Capture
First Failure Data Capture (FFDC) is intended to decrease the need for the
reproduction of user failures by automatically capturing the data associated
with a failure as soon as it is detected. In order to accomplish this, the
software modules in OS/2 Warp Connect (PowerPC Edition) have been coded
in a defensive manner which allows them to detect aberrant conditions.
Once such a failure is detected, key internal failure states will be logged for
subsequent analysis. The primary FFDC tool is the First Failure Support
Technology (FFST) which utilizes the logging service.

All system logs, including the all important central error log, are created and
stored in the OS2SYSTEMRAS directory of the boot drive.

4.6.3.2 Data Browsing
Data browsing allows service personnel to query and sample running
systems in order to better understand the operation of those systems. Data
browsing is the least invasive from of serviceability tool. It should not affect
the operation of a running system. The primary data browsing tools in OS/2
Warp Connect (PowerPC Edition) support Event Tracing, Resource Monitoring
and Performance Monitoring.

Event Tracing: Event tracing in OS/2 Warp Connect (PowerPC Edition) has
been designed to incorporate the best aspects of the currently available
tracing methodologies. The trace facility has been built upon the base Event
Trace capabilities of the microkernel which allows the facility to be used by
the microkernel, by the microkernel services and by OS/2 applications.

The event tracing facility is comprised of a number of tools. They include:

• TRACE - This utility is used to turn on and off trace points.

Chapter 4. OS/2 Functions 125

• TRACEFMT - This utility is used to view logged event trace data.

• TRCUST - This utility is a trace point definition tool.

The event trace facility has been built on the existing OS/2 trace facility. It
has been expanded to include support for the new OS/2 Warp Connect
(PowerPC Edition) components (for example, the microkernel). The changes
will be incorporated into the OS/2 Warp (Intel) version of the operating
system.

Performance Monitoring: The main tool provided in OS/2 Warp Connect
(PowerPC Edition) for performance monitoring is called the System
Performance Display program (SPD) for OS/2 Warp Connect (PowerPC
Edition). It is designed to assist end users in analyzing system performance.
The SPD helps in managing the major system resources (CPU, DASD, paging
and memory) to achieve greater efficiency and maximum performance.

The SPD tool allows for collecting of performance data about the operating
system and applications, displaying this information graphically, and creating
reports or providing statistics on the collected data.

Resource Monitoring: Resource monitoring allows the user to obtain data
on usage of the various system components. Since this process is tightly
coupled with performance monitoring, the Systems Performance Display
program contains features that allow resource monitoring to occur. For
example, the SPD program, has a memory analysis tool which allows
memory analysis at various levels, including the working set.

4.6.3.3 System Dump
It is possible that First Failure Data Capture (FFDC) will not be sufficient to
solve all detected system and application problems. In some cases it will be
necessary to use the broader approach of taking a full system dump.

OS/2 Warp Connect (PowerPC Edition) supports an automatic system dump
capability that can dump system images to a defined disk area. The system
dump mechanism also has the ability to automatically reboot the system.

The OS/2 Warp Connect (PowerPC Edition) system dump process consists of
three parts:

• Configuration/Enablement

The covers all the preparatory activities that occur before a system dump
is taken. Control of this function is through the System Dump
Configurator program.

126 OS/2 Warp (PPC)

• Triggering

As with OS/2 Warp (Intel), the system dump can be triggered by
keyboard entry sequences, programmable APIs or CONFIG.SYS entries.
One difference is that the system dump is now taken by the microkernel.

• Formatting

OS/2 Warp Connect (PowerPC Edition) provides a system dump formatter
to display all portions of the system dump.

4.6.3.4 Low Level Remote Debug
When occasions occur that FFDC and System dumps do not provide enough
information, OS/2 Warp Connect (PowerPC Edition) also has the ability for
remote debug.

The remote debugging facility is based on a core kernel-level debugger that
is included in all OS/2 Warp Connect (PowerPC Edition) systems (as part of
the microkernel product).

The debug system can be accessed by attaching another machine to the
serial port of the PowerPC machine and using the debugger through a
communications program.

4.6.4 Vital Product Data
The Vital Product Data (VPD) facility is a new capability for the OS/2
environment. It provides a standard way in which to describe the hardware
and software parts of a system. VPD information is used for a variety of
purposes that include:

• Enables the creation of serviceability tools that display what components
are present of a customer′s system.

• Allows standard component identification information to be included on
all logged error records.

• Enables the installation tools to determine the current state of product
prerequisites and co-requisites on a customer′s system.

• General system management.

The VPD facility has been based on the Desktop Management Interface (DMI)
standard, which was developed by the Desktop Management Task Force
(DMTF).

Chapter 4. OS/2 Functions 127

4.6.4.1 The DMI Standard
The DMTF DMI standard is an attempt to create a local operating system
framework that links network management agents to the hardware and
software components running on the system.

The DMI standard addresses four levels of definition:

• An API set (called the Management Interfaces (MI)) that can be called by
management applications (or their agents).

• A Logging Service Interface (SPI) set (called the Component Interface
(CI)) that allows hardware and software components to respond to MI
requests.

• A file-based syntax (called the Management Information Format (MIF)
syntax) that allows DMI-compliant components to be defined to the DMI
Service Layer (SL).

• A set of standardized group definitions that define classes of attribute
sets that are shared by classes of components.

The heart of the DMI architecture is the MIF database. As DMI components
are installed, their MIF file definitions are installed within the MIF Database.
As with a products relating to systems management in OS/2 Warp Connect
(PowerPC Edition), the MIF database resides in the OS2SYSTEMRAS
directory on the boot drive.

In OS/2 Warp Connect (PowerPC Edition), access to the VPD information is
through the DMI MIF Browser program.

128 OS/2 Warp (PPC)

Chapter 5. Installation

The OS/2 Warp Connect (PowerPC Edition) installation process has changed
significantly from the current OS/2 Warp (Intel) version of OS/2. The first
release of the installation program provides the ability to install the operating
system, its features, device drivers, and other applications. Applications can
be pure OS/2 applications, OS/2 applications with system service
components, or pure system services that run on the IBM microkernel.

In this release of OS/2 Warp Connect (PowerPC Edition), the Configuration
Installation and Distribution (CID) methodology of installing of the operating
system is not possible. However, CID installation is still available for the
installing of CID enabled applications into the OS/2 Warp Connect (PowerPC
Edition) environment.

The OS/2 Warp Connect (PowerPC Edition) installation is described in two
phases. The goal of the first phase, called media preparation, is to prepare
the machine for the installation of the OS/2 Warp Connect (PowerPC Edition)
system. The second phase, feature install, allows the installation of the OS/2
Server and optional features.

5.1 Media Preparation
The media preparation phase of the OS/2 Warp Connect (PowerPC Edition)
installation is similar to the initial phase of the OS/2 Warp (Intel) version of
the operating system. The aim of this phase is to prepare the machine for
the installation of the operating system by partitioning the hard disk into the
necessary configuration.

During this phase of the installation, the following sequence of events occurs:

 1. Initial boot from the CD-ROM installation media.

 2. Load and start the Microkernel, Microkernel Services, Shared Services,
and the OS/2 installation program from the installation media.

 3. Load and start the media preparation program by the OS/2 initialization
program.

 4. Partition the hard disk using the utility file server (FDISK).

 5. Create the initial file system(s) using the utility file server (FORMAT).

 6. Return to the OS/2 initialization program.

 Copyright IBM Corp. 1995 129

 7. Load and start the OS/2 Server from the installation media with PM Shell
activated.

 8. Copy files of MK and OS/2.

The IBM Microkernel relies on device configuration data, and resource
description, to properly configure a device. Depending on the system
architecture, the device configuration information is obtained from a variety
of sources.

5.1.1 Partitioning
One of the main differences in OS/2 Warp Connect (PowerPC Edition) and
OS/2 Warp (Intel) is the requirements for the partitioning of the hard disk.
Instead of a single partition that was used in OS/2 Warp (Intel), two partitions
are created OS/2 Warp Connect (PowerPC Edition). A typical example of an
OS/2 Warp Connect (PowerPC Edition) disk configuration is shown in
Figure 24. The two partitions are known as the:

• Boot or Type 41 Partition

• System Partition

Figure 24. Disk Partitions in the Boot Device

The boot partition contains the boot loader. The boot loader is a requirement
by the firmware of the PowerPC and is loaded by the firmware when the
system boots. The boot partition is a small partition of approximately 1-2MB.

The system partition is the main partition of OS/2 Warp Connect (PowerPC
Edition). It is entered into the name space as (/file/system) and contains
the following OS/2 Warp Connect (PowerPC Edition) components:

130 OS/2 Warp (PPC)

• The Microkernel, Microkernel Services, System Services, Device Drivers
and control files necessary to correctly execute the microkernel.

• The OS/2 Server and its associate support files.

• Enough space to support paging during the boot process. Once the
system has started, the OS/2 Server will start an additional paging
system for its own needs.

In the first release of the operating system, the system partition is a primary
partition, formatted using the FAT file system. There is no option during the
installation to choose the file system for the system partition. HPFS
formatted system partitions may be an option in a future release of the
operating system.HPFS partion is supported in the user partition.

5.1.2 System Migration
OS/2 Warp Connect (PowerPC Edition) can be installed over any previous
PowerPC based operating system. However, there are a number of
restrictions in what information can be migrated to the new installation.

If you are re-installing the system over a previous copy of the OS/2 Warp
Connect (PowerPC Edition) operating system, then the system will migrate
exiting applications and programs.

If you are installing over one of the two currently available PowerPC
operating systems, Windows NT (PowerPC Edition) or AIX, then no system
migration occurs. In fact if the native file system of Windows NT or AIX is
being used (for example the NTFS file system for Windows NT) then the hard
disk must be reformatted during the first phase of the OS/2 Warp Connect
(PowerPC Edition) installation.

In OS/2 Warp (Intel) the boot manager facility allowed different operating
systems to co-exist on the same hard disk. In this release of OS/2 Warp
Connect (PowerPC Edition), a boot manager facility has not been provided.
A multi-boot facility which would allow a combination of PowerPC based
operating system may be available in a future release.

5.2 Feature Install
Feature install handles the installation of documentation, games and the
BonusPak.

Chapter 5. Installation 131

Feature install also handles maintenance of software in that same way that it
handles new software installation. This means that unlike in OS/2 Warp
(Intel) a separate service installation tool is not necessary.

Although the new installation routines will allow for cumulative and selective
fixes to be applied to the system, for the first release of the OS/2 Warp
Connect (PowerPC Edition) operating system, backout of service installations
is not supported.

5.2.1 Feature Install Catalog
The first screen that is shown during the installation is the Feature Install
catalog. Not unlike the selective install program in OS/2 Warp (Intel), the
Feature Install program allows you to choose to install documentation,
games and BonusPak.

5.2.2 Drag and Drop Install
One of the most innovative features of the feature installation program is that
each feature that is installed is considered an object by the system. This is
totally different to the OS/2 Warp (Intel) installation program and allows a
level of configurability that was unavailable in previous OS/2 versions. In
order to accomplish this, the feature installation program adds two objects to
the Workplace Shell environment. They are:

• Install Object

• Inventory Object

Both of these objects have settings that can be changed by the user. The
install objects can be opened to make selections and configuration changes,
while the inventory objects contain information about system software
installed in the system.

5.2.3 Install Objects
The install object represents a product that can be installed to your system.
The object exists on the product source media, and can be accessed through
the file system object.

For example, a product that is shipped on CD-ROM could be represented by
an install object in the root directory of the CD-ROM. In this case, the user
could view the product′s install object by placing the CD-ROM in the drive
and selecting Open - icon view from the context menu of the CD-ROM drive
object. The install object would be visible alongside any file objects in the
top container of the opened CD-ROM object.

132 OS/2 Warp (PPC)

For OS/2 Warp Connect (PowerPC Edition), the existence of the install object
allows you to bypass the Feature Install catalog and install the various
components directly from the install object.

The install object class supports commonly used installation functions (such
as file copy, configuration file updating, and product registration).

Once the install object is visible, you may install all defaults for the product
by simply dragging the install object to any Workplace Shell folder, including
the desktop itself. Alternatively, you could perform actions on the install
object to configure the product before installation.

From the install object context menu, the user can open a tree view of the
object (to obtain access to a lower level of install objects) or open the object
settings (to view product information).

5.2.3.1 Available Modes
Install objects support two different modes of operation. They are:

• Development

• User

Development mode enables the creation of install objects. This mode is
used by software developers. User mode allows for the installation of install
objects. This mode is used by the end user. For example, the end user
should not be able to modify the information on the install object settings
pages.

5.2.4 Inventory Objects
An inventory object represents a product that has been installed to the your
system. This object may be used to remove the product the product from the
system (uninstall), or simply to view the features and settings that were
selected when the product was installed.

One advantage of the inventory objects is for CID administrators. Each
inventory object provided by the Feature Installer stores its persistent data in
an associated text file called INSTDATA.INI. This file contains the CID
keywords that were used to create the object. This means that creating a
CID response file merely involved copying the information from the
INSTDATA.INI files to a new response file.

Chapter 5. Installation 133

5.2.4.1 Views
The inventory hierarchy parallels the hierarchy of install objects that were
selected when the product was installed.

5.2.4.2 Removing Features
The inventory objects offer greater control over removing operating system
features than was available in OS/2 Warp (Intel). In order to remove a
feature from the system, simply drag the inventory object representing the
installed product to the shredder, or by selecting uninstall from the open
view or from the objects context menu.

This will result in the deletion of the product files, the reversal of any
configuration changes made when the product was originally installed, the
deletion of any workplace objects created for the product, and the deletion
on the products inventory object.

The Inventory objects are kept in an Installed Software folder. The Installed
Software folder is available from the OS/2 desktop.

Although this system is somewhat more powerful than the uninstall feature of
OS/2 Warp (Intel), it does not support the removal or the entire operating
system. If you wish to install a different operating system onto the machine,
then the most common practice is still to use FDISK and FORMAT, in the
same way that OS/2 Warp (Intel) is working currently.

5.2.4.3 Adding Features to the System
Adding additional features once a component is installed is very easy. To
add features or components that were not originally selected simply follow
one of the steps outlined below:

• Re-open the install object and drag the desired subfeature to the
corresponding inventory object.

• Select install from the context menu for the feature.

5.3 Inventory Information
Documentation of what is installed on the system, and the level of the
software on the system is maintained in an installed software inventory. This
ensures that service applied to the system will not return the user to a
previous level of the software. Using the installed software inventory, also
provides service with an accurate description of products and services
installed onto a machine. This makes it easier for service to give a customer

134 OS/2 Warp (PPC)

a response to his problem, and it gives service the ability to more accurately
duplicate a customer′s system for problem re-creation.

The following information is recorded in an installed software inventory about
each product subproduct installed:

• Description - A description of the software.

• Tag - A short name for the software.

• Title - The software package title.

• VendorTag - A short name for the software manufacturer.

• VendorTitle - The name of the software manufacturer.

5.4 CID and Unattended Installation Support
All of the installation programs and mechanisms in OS/2 Warp Connect
(PowerPC Edition) support the Configuration, Installation, and Distribution
(CID) architecture which calls for support of installation from redirected
sources and installation in an unattended fashion. This entails:

• Redirected installation

• Response file support

• Ability to transfer product files / images to a code servers hard disk for
installation purposes

• Command line support is implemented via Clifi executable

• Logged process information

In this release of the OS/2 Warp Connect (PowerPC Edition) operating
system, CID support differs slightly from what is available in OS/2 Warp
(Intel). Although it is still possible to install applications and fixes using the
CID methodology, the operating system itself cannot be installed using CID.

5.4.1 Standard Keywords
The following standard keywords are supported by the OS/2 Warp Connect
(PowerPC Edition) Feature Installer:

• Include - Include other response files for processing

• Reinstall - Force reinstallation, even if the product is up to date
(Implemented only through Clifi).

• Append - Append log information to log files (Implemented only through
the Clifi).

Chapter 5. Installation 135

Several of the commonly used keywords are no longer supported by the
OS/2 Warp Connect (PowerPC Edition) Feature Installation program, and are
shown in Table 7 on page 136.

Table 7 (Page 1 of 2). Unsupported CID Keywords in OS/2 Warp Connect
(PowerPC Edition)

Keyword Definition Comment

Copy Copy a file. This keyword will be ignored by the
OS/2 Warp Connect (PowerPC Edition)
Feature Installer

UserExit Execute a user
exit program.

This keyword will be ignored by the
OS/2 Warp Connect (PowerPC Edition)
Feature Installer. The Installer
provides a rich ability for a package
developer to specify user exits.

Reconfigure Force product
reconfiguration.

The OS/2 Warp Connect (PowerPC
Edition) Installer does not separate
the file transfer and configuration
steps. Configuration will always be
done.

Software Identify product
features.

This keyword will be ignored by the
OS/2 Warp Connect (PowerPC Edition)
Feature Installer.

The Installer uses a SELECTED
variable for each object that is to be
installed. The value of this variable
can be changed by the actions that
occur as a result of processing
dependencies that the package
developer specified.

Within the appropriate sections of the
response file the SELECTED keyword
my be used to selected the installation
of specific software. Dependency
processing will override any setting
specified in the response file.

Defer_Configure Defer product
configuration.

This keyword will be ignored by the
OS/2 Warp Connect (PowerPC Edition)
Feature Installer.

136 OS/2 Warp (PPC)

Table 7 (Page 2 of 2). Unsupported CID Keywords in OS/2 Warp Connect
(PowerPC Edition)

Keyword Definition Comment

Icon_Placement Specify
positioning of
product icons
within a folder.

This keyword will not be produced or
directly processed by the OS/2 Warp
Connect (PowerPC Edition) Installer.
However, it will be parsed and made
available to product developers within
user exists. If included in a response
file, it needs to be placed in the
appropriate section. When name
qualification will not remove an
ambiguity, only the last one
encountered will be remembered.

This function is handled via the Create
Objects pages through the setup
string parameter. Variables can be
used within the setup string to control
the icon placement.

Folder_placement Specify
positioning of
product folders.

This keyword will not be produced or
directly processed by the OS/2 Warp
Connect (PowerPC Edition) installer.
However, it will be parsed and made
available to product developers within
user exists. If included in a response
file, it needs to be placed in the
appropriate section. When name
qualification will not remove an
ambiguity, only the last one
encountered will be remembered.

This function is handled via the Create
Objects pages through the setup
string parameter. Variables can be
used within the setup string to control
the folder placement.

Chapter 5. Installation 137

5.5 Tracing Installation Problems
One of the most common problems with OS/2 Warp (Intel) was with the
installation of the product. Users were often left with a system that has failed
to install, but without any indication to what portion of the installation failed.

In order to rectify at least some of this problem, OS/2 Warp Connect
(PowerPC Edition) supports the use of First Failure Support Technology
(FFST) for error logging during the installation. It also uses FFST for its data
browsing capabilities to externalize the relevant state of the component, both
during system boot from a CD-ROM and during selective installation of
subsystems. Externalizing the state of a component allows the user to
examine what action the component was performing when it may have failed.

FFST error logging is always enabled. The default error log is kept in the
install target partition during a CD-ROM boot, unless otherwise specified in
the response file. In this case, the response file would be located on
diskette.

In addition to the FFST support, the OS/2 Warp Connect (PowerPC Edition)
Install component keeps a user-defined error and activity log independent of
FFST in order to meet CID requirements.

5.5.1 Media Preparation
Only a limited number of error messages can be logged using First Failure
Support Technology (FFST) before the OS/2 server is running. During the
media preparation, OS/2 Warp Connect (PowerPC Edition) uses one FFST call
to indicate an error has occurred and direct the user to the more detailed
install error log, called INSTALL.LOG, which is kept in the target partition.

Entries will be recorded in the install log for the following:

• Error Messages - For errors detected during media preparation and the
formatting of partitions

• Major System Changes - Such as disk partitioning and formatting of
partitions

138 OS/2 Warp (PPC)

5.5.2 Feature Install
Due to the object oriented and graphical nature of the Feature Installation
component, much of the internal state of the installation has already been
externalized. For example, feature selection and dependencies, variable
resolution, and file lists are already accessible to the user and support
personnel.

The OS/2 Warp Connect (PowerPC Edition) Feature Installation component
provides the following information through FFST:

 1. Procedure tracepoints. Major functions are traced to provide sufficient
information to understand component failures.

a. File transfer functions

1) Source and target filenames, including path

b. Object creation and class registration

1) Setup string used to create the object

2) Setup string used to register the class

 c. Configuration changes to CONFIG.SYS, OS/2 and Windows INI files

1) Lines deleted

2) Lines added

3) Lines modified

d. User Exit APIs

1) Feature ID

2) Function called

 2. Error Messages. Error messages detail ing component failure are logged
with FFST, as well as with a user-selected log file for CID purposes.

a. Configuration change errors

b. File transfer

 c. Internal install functions

d. Object creation

Chapter 5. Installation 139

140 OS/2 Warp (PPC)

Chapter 6. Application Support

OS/2 Warp Connect (PowerPC Edition) runs 32 bit OS/2 applications, and
DOS, Windows or DPMI applications. It is also able to run Win32s
applications as OS/2 Warp (Intel) does. The 32 bit OS/2 applications, if
currently available on OS/2 Warp (Intel), need to be recompiled for the
PowerPC platform.

The DOS, Windows or DPMI applications run unchanged from the OS/2 Warp
(Intel) environment. OS/2 Warp Connect (PowerPC Edition) provides the
necessary emulation of Intel instructions to run the DOS, Windows or DPMI
binaries.

OS/2 Warp Connect (PowerPC Edition) will not run 16 bit OS/2 applications,
nor will it run family API (FAPI) applications.

6.1 Application Development
Currently, application development is done by the means of the Metaware
cross platform development tools. This means that the compile and link of a
program is done on the Intel platform, and that the executable program or
dynamic library produced, has to be run on the PowerPC platform. The main
components of the Metaware toolkit are:

• HCOPPC - The Compiler

The compiler may be directed to invoke the other necessary components
of the toolkit. If so, it creates PowerPC assembler statements and
invokes the PowerPC assembler.

The compiler must be on, or beyond Release 2.6.

• ASPPC - PowerPC Assembler

The assembler creates an ELF compatible object file from either a source
file created by the compiler or a source file written by a developer.

The assembler must be on, or beyond Release 1.74.

 Copyright IBM Corp. 1995 141

• LDPPC - The Linker

The linker may be invoked by the compiler, or it may be run separately.
In both cases it links any ELF compatible object modules, regardless of
their source origin, and creates an ELF executable or dynamic link
library.

The linker must be on, or beyond Release 3.47.

• ARPPC - The ELF Archiver

The archiver manages library files by combining .OBJ files or .LIB files
into new .LIB files, deletes entries in .LIB files and lists entries in .LIB
files.

• ELFDUMP - The ELF Dumper

The ELF dumper knows the ELF format, and presents the contents of an
ELF compliant file in readable form.

• BD - The Binary Dumper

The binary dumper is a hexadecimal browser, which might be instructed
to recognize certain data structures.

The toolkit also contains documentation in the form of postscript files. It
contains the necessary header fi les, both the standard C and C++ header
files, and the OS/2 header files normally found in the OS/2 toolkit.

The .LIB files associated with the above mentioned header files are present,
as well as some sample programs. Finally, Direct-to-Som is supported in the
package.

142 OS/2 Warp (PPC)

Appendix A. Changes to MVM DOS Settings

Table 8 (Page 1 of 6). Changes to the MVM DOS Settings.

DOS Setting Description A
d

d
e

d

D
e

le
te

d

C
h

a
n

g
e

d

COM_DIRECT_ACCESS In OS/2 Warp Connect (PowerPC
Edition), direct access to
hardware applications is not
permitted by the hardware.
Consequently, OS/2 Warp
Connect (PowerPC Edition) will
always emulate application
access of hardware ports.

√

DOS_BUFFERS Comparable to the BUFFERS=
statement in PCDOS, which is
used to allocate memory for a
specified number of disk cache
buffers when the system starts.

√

DOS_CODEPAGE This setting allows the user to
specify the codepage of a DOS
session. The codepage must be
already available in the system,
allowing the user to choose from
an available list.

√

DOS_COUNTRY This setting allows the user to
specify the country code for a
DOS session. The country code
must be already available in the
system, allowing the user to
choose from an available list.

√

 Copyright IBM Corp. 1995 143

Table 8 (Page 2 of 6). Changes to the MVM DOS Settings.

DOS Setting Description A
d

d
e

d

D
e

le
te

d

C
h

a
n

g
e

d

DOS_FCBS This DOS settings is carried
over from OS/2 Warp (Intel), but
the defaults have changed from
those used by OS/2 Warp (Intel).
This setting is used to specify
the maximum number of FCBs
(file control blocks) that can be
open concurrently in one DOS
session. One of the two
possible parameters on this
setting has been removed; the
default has been changed from
16 to 4.

√

DOS_FCBS_KEEP Under OS/2 and versions of
DOS prior to 6.3, there are two
FCB values. The second value
is no longer utilized, meaning
that this entry is no longer
required.

√

DOS_INSTALL Loads a memory-resident
program into memory when you
start a DOS session. The
memory-resident programs stay
in memory as long as your
sessions exist, and can be used
even when other programs are
active.

√

DOS_MESSAGE_FILE This setting specifies the
language that will be used for a
session.

√

DOS_NUMLOCK This setting specifies whether
the NUM Lock key on the
keyboard is set to ON or OFF
when the VDM starts.

√

144 OS/2 Warp (PPC)

Table 8 (Page 3 of 6). Changes to the MVM DOS Settings.

DOS Setting Description A
d

d
e

d

D
e

le
te

d

C
h

a
n

g
e

d

DOS_STACKS This setting supports the
dynamic use of stacks to handle
hardware interrupts.

STACKS=n,s. n specifies the
number of stacks. Valid values
for n are 0 and numbers in the
range 8 through 64. s specifies
the size (in bytes) of each stack.
Valid values for s are 0 and
numbers in the range 32
through 512. The default for this
setting is 9,128.

√

DOS_SWITCHES This setting provides special
options, useful only from the
config.sys file. The options are:

• /K, forces an enhanced
keyboard to behave like a
conventional keyboard.

• /N, prevents you from using
the F5 or F8 key to bypass
startup commands.

• /F, skips the delay after
displaying the ′Starting PC
DOS...′ message during
startup.

√

DPMI_DOS_API The default for this setting has
changed from AUTO to
ENABLED.

√

EMS_LOW_OS_MAP_REGION This setting was designed
specifically to support Microsoft
Windows Version 2.0 real mode
applications. OS/2 Warp
Connect (PowerPC Edition) will
not support Windows 2.0
applications. Hence, this setting
is no longer required.

√

Appendix A. Changes to MVM DOS Settings 145

Table 8 (Page 4 of 6). Changes to the MVM DOS Settings.

DOS Setting Description A
d

d
e

d

D
e

le
te

d

C
h

a
n

g
e

d

GENERIC_HW_SUPPORT This setting allows the user to
specify if they want support for
generic devices or not.

√

HW_ROM_TO_RAM √

IDLE_MAX_SLEEP_TIME This setting defines the
maximum period of time, in
milliseconds, that the DOS
session will be put to sleep
when it is determined that the
DOS session is idle. A value of
0 will disable the idle detection
in this DOS session.

The default setting is 2000
mill iseconds.

√

IDLE_SENSITIVITY In OS/2 Warp (Intel), this setting
was used to set a threshold for
polling time before the operating
system reduced the polling
programs portion of the
processor time.

This setting has been replaced
by:

• IDLE_TIMEOUT

• IDLE_MAX_SLEEP_TIME

√

IDLE_TIMEOUT This setting defines the amount
of time (in seconds) allowable
between the last busy event and
an idle event. A value of 0 will
disable idle detection in this
DOS session.

The default value is 5 seconds.

√

TRANSLATED_CACHE_SIZE This setting allows the user to
specify the size of the Intel
translated instruction cache.

√

146 OS/2 Warp (PPC)

Table 8 (Page 5 of 6). Changes to the MVM DOS Settings.

DOS Setting Description A
d

d
e

d

D
e

le
te

d

C
h

a
n

g
e

d

VIDEO_FASTPASTE This setting exists in OS/2 Warp
(Intel). Its purpose is to allow
applications to receive pasted
data from the DOS shield via an
INT 16 fast path that bypassed
much of the processing a
normal INT 9 paste enabled.

OS/2 Warp Connect (PowerPC
Edition) has a built-in
mechanism that allows pasted
characters to feed to the
application key buffer as fast as
the application can retrieve
them without overlaying the
previous unretrieved characters.

Consequently, OS/2 Warp
Connect (PowerPC Edition)
provides the same function, in
the form of a continuous built-in
feature while supplying
additional function that prevents
pasted keystrokes from being
overwrit ten. Hence, this setting
is not required.

√

VIDE0_8514A_XGA_IOTRAP In OS/2 Warp (Intel), this setting
was set to ON to allow
controlled access to the video
device. It was set to OFF to
provide faster unrestricted
access for games and graphical
applications.

IO trapping in OS/2 Warp
Connect (PowerPC Edition) has
to be done at all times, so there
is no need for this foreground
performance item.

√

Appendix A. Changes to MVM DOS Settings 147

Table 8 (Page 6 of 6). Changes to the MVM DOS Settings.

DOS Setting Description A
d

d
e

d

D
e

le
te

d

C
h

a
n

g
e

d

VIDEO_ONDEMAND_MEMORY This setting was meant to be a
way of increasing the speed of
the session switch by allocating
the shadow VRAM as the access
to the physical VRAM was
taking place.

This setting is no longer
supported as it is not clear
whether the user can measure
the benefits of such a feature or
decide if an application would be
more usable if the property is
set.

√

VIDEO_RETRACE_EMULATION This property was meant to
improve the performance of the
text VRAM updates by
emulating the video retrace.
This had an adverse effect on
the graphical applications.

√

VIDEO_VRAM_USAGE This setting controls how the
off-screen usage is handled for
the DOS sessions.

√

148 OS/2 Warp (PPC)

Glossary

A
Access . An interaction to obtain information
from any source or to communicate.

Access control list . A list associated with an
object that identifies who can access the object
and how they can access the object for
example, read-only write-only access.

Access Method . The technique or program
used for moving information or communicating.

Access Time . The time from issuing a
command to read or write to a file on disk until
the physical read or write is actually carried out.

Access Object . Object of the rights
administration on which subjects access.
Access objects are generally files and
interfaces.

Administration Object . Rights administration
object which contains rules for several users.
The administration object can be assigned to
domain, user groups, users, workstations and
trusted programs.

Adapter . A part that electrically or physically
connects a device to a computer or to another
device.

Address . In data communication , the unique
code assigned to each device or workstation
connected to a network.

AIX . Advanced Interactive eXecutive: IBM
variant of Unix operating system.

Albert . 3 Dimensional graphics model
developed by Taligent.

Algorithm . A set of rules to solve a problem in
a number of steps.

Alias . An alternate label, or name; for example,
a name and one or more aliases may be used to
refer to the same file.

Alternate personality . An operating mode, or
personality, in an environment that supports
multiple operating modes, other than the
dominant personality. An alternate personality
does not control the desktop on display screens.
The MVM personality is an example of an
alternate personality.

Analog data . Data in the form of physical
quantity that is considered to be continuously
variable and whose magnitude is made directly
proportional to the data or to a suitable function
of the data.

Application binary interface . Linkage
conventions for a particular microprocessor.
They define how registers are used, how they
are saved and destroyed across calls, however
parameters are passed, stack versus register,
and other conventions.

Application program . A program written for or
by a user that applies to the user ′s work, such
as a program that does inventory control or
payroll.

API . Application Program Interface. Interface
through which programs can communicate.

ASCII . American National Standard Code for
information interchange: a coded character set
used on personal computers.

Asymmetric multiprocessing . Unequal
distribution of tasks across multiple processors.

Asynchronous I/O . I/O operations that are
performed separately from the job that
requested them.

 Copyright IBM Corp. 1995 149

Authenticate . A process to verify the integrity
of data or a message, or to verify the user of an
information system or protected source.

Authentication . Confirmation of a given
identity, using password, smart card or ID token.

Authentication server . Part of a trusted security
base. Responsible for authenticating identities
of clients. Maintains passwords and group
membership information for users.

Authorize . Granting someone the right to use a
computer, application or database; is also used
in connection with programs to grant complete
or restricted access to an object, resource or
function.

Audit . Logging of user actions for audit
purposes.

Auditor . Role with regard to rights
administration or log evaluation. DP auditor,
responsible for auditing DP systems.

B
Base Video Handler . Part of OS/2 Kernel that
handles all OS/2 full-screen operations,
including both text and graphics in different
resolutions.

Base Video Services . Part of OS/2 kernel that
provides services to the Presentation Device
Driver, Base Video Handler and the Virtual
Video Device Driver.

Batch File . On a personal computer, a file
having the extension .BAT, which contains a list
of commands that are executed when the file is
called.

Big endian . See endian.

Bitmap . (1) An area of memory or storage that
contains the pixels representing an image,
arranged in the sequence in which they are
normally scanned, to display the image.

(2) A representation of an image by an array of
bits.

BIOS . The area of the computer that controls
incoming and outgoing signals.

Boot . The process of starting up a personal
computer.

Boot Drive . Logical drive from which the
operating system is loaded. Generally it is the
disk drive (C). It can, however, also be a floppy
drive (A).

Boot Protection . Prevention of a system start
from a medium other than the hard disk (or boot
ROM). A system start with an operating system
diskette is prevented.

Bus . In a processor, a physical facility to
transfer data; for example, ISA, MCA. Adapter
cards are connected to a bus.

Byte . A string that consist of a number of bits,
treated as a unit, and representing a character.

C
Card Services . A key element of PCMCIA
software architecture. A software management
interface that allows you to allocate the system
resources (such as memory interrupts)
automatically, once the Socket Services detects
that a PC Card has been added. Card Services
also releases these sources when the PC Card
has been removed.

CD-ROM. Compact Disc Read Only Memory. A
Compact disc specifically for storing data.

CD-ROM XA . Compact disk read-only-memory
extended architecture. A partial implementation
of CDI and DVI standards.

Central Service Task . A part of VWIN that
contains a list of all Presentation Task and the
VDM. It routes the broadcast messages from
the VDM or Presentation Task.

150 OS/2 Warp (PPC)

Channel . A connection between a personal
computer and one or more input/output devices.

Checksum . The sum of a group of data, used
for checking purposes.

CID. The IBM architected way to automate
installation and customization for Workplace and
other products. CID enables LAN connected
machines to be installed and maintain remotely.

Client . In the Workplace architecture
client-server environment, the consumer of a
service. An example is an application or shared
service using a client l ibrary to communicate
with the Workplace Naming Services to retrieve
information from the system ′s name space.

Client credentials . The set of data associated
with a client: user identifier, group identifier(s),
roles (i.e. administrator), special permissions
etc.

Client Library . A collection of executable
personality neutral code and data that is bound
to an application and provides the API of a
Workplace shared service to clients. The
functions of the service API may be
implemented in the library or the l ibrary may
map them to requests to a server or
microkernel service.

Client-server model . In Workplace, the Mach
defined environment in which a small group of
services (servers) at the system layer support a
large group of clients (users) at the application
layer via interprocess communication.

Client/Server System . A client/server system is
a LAN local network.

Clip board . A temporary storage area used to
pass information within a program or from a
program to another.

Clustered multiprocessing . Distribution of tasks
across sets of multiple processors.

CMOS . A chip technology that requires little
power, used to store vital configuration data of
a PC.

Codepage . An assignment of graphic
characters and control function meaning to all
code points.

COM . Serial interface for data communication.
Is used to connect a modem, for example. Can
only be achieved by encryption.

Configuration . The manner in which the
hardware and software of an information
processing system are organized and
interconnected.

Controller . A device that controls the operation
of input/output devices.

Conventional Memory . Random Access
memory in a PC that DOS or OS uses as the
first 640K byte.

Core shared services . A shared service that is
includes with OS/2 for PowerPC or Workplace
products and can always be counted on to be
present. These include name services, file
services, pipe services, print/spooler services,
loader services, internationalization services,
event and windows services, LAN transport
services, installation services and software
serviceabil ity services.

CRC. Cyclic Redundancy Check. Checksum
which is not cryptographic.

D
Device . A physical unit of a computer system,
often used for input/output operations, which
can be used in a logical order or have a logical
address.

DDK . Device Driver Kit; a set of programming
tools provided for external device drivers
developers.

Glossary 151

Device Context . A data structure that is
responsible for translating graphics commands
made to its associated presentation space into
commands that the physical device can convert
to displayed information.

Device Driver Interface (DDI) . Part of Graphics
Engine that is responsible for serializing all the
calls from PMGPI.

Directory . A hierarchically structured logical
area for storing files on a hard disk or diskette,
which may include one or more sub-directories.

Dispatcher . Part of OS/2 Graphics Engine which
is responsible for mapping all the functions
coming from Device Driver Interafce and
dispatch the appropriate functions to the
specified driver hardware.

Distributed File System . A file system
composed of files or directories that physically
reside on more than one computer in a
communication network.

Distributed SOM (DSOM) . Provides remote
access to SOM objects in a transparent way that
insulates client programmers from having to
have knowledge of the location or platform type
where a target object will be instantiated.
DSOM allows programmers to use the same
object model independently of whether the
objects they access are in the same process, in
another process on the same machine, or
across distributed networks.

Dominant personality . A personality that is
started first, provides the desktop (most likely,
the desktop is an application of the dominant
personality), and exports a set of support
functions to alternate personalities and
Workplace Shared Services.

DOS. Disk Operating System,: an operating
system for personal computers.

Domain . Organizational unit which is commonly
managed. Also known as system.

Dynamic Data Exchange (DDE) . A messaging
protocol that allows PM applications to
exchange data via shared memory. DDE
transactions always take place between a client
application and a server application. The client
initiates a dialog with the server by requesting
data from the server. The server responds by
providing the request data to the client.

Dynamic Link Library (DLL) . A file containing
executable code and that bound to a program at
load time or run tome, rather during linking.
The code and data in a dynamic link library can
be shared by several applications
simultaneously.

E
EBCDIC . Extended Binary Coded Decimal
Interchange Code: a coded character set used
on main-frames.

Emulator . Imitator.

Endian . The addressing model that determines
the byte ordering of both data and instructions
that are stored in computer memory. The big
endian model assigns the lowest address to
highest-order or most significant byte of a
multibyte scalar data item. The little endian
model assigns the lowest address to the lowest
order or least significant byte of a multibyte
scalar data item.

Event and Window Services . A Workplace core
shared service that provides the mechanism for
sharing the console device among personalities
and applications. It also provides services for
the management of window and events.

Event Server . A Part of Event and Window
Services (EWS) which is responsible for
processing the event input port.

Executable and linking format (ELF) . In the
Workplace architecture, the object module
format.

152 OS/2 Warp (PPC)

Extended attribute . The OS/2 method of
attaching additional information to a file object.
Extended attributes can be used to store notes
on file objects (e.g, version, history), categorize
file objects (e.g, file type, associations),
describe the format of data contained in the file
object, or append additional data to the file
object. They are stored separately from the file
object they are associated with and are
managed by the file system attached to the file
object.

Extended data . User-defined information,
including multimedia information, about Light
Table folder objects. Such information goes
beyond what is available in OS/2 standard data.
Extended data includes user-defined columns,
and may come either from a supported
database or from extended attributes.

Extension . In the name of a file, the three
letters following the dot, which often indicates
the type of file, for example, BAT in
AUTOEXEC.BAT indicates batch file.

F
Filter GRADD . Extensions for the GRADD that
provides a way to modify the GRADDs behavior
without rewriting and compiling the GRADD.

First Failure Data Capture (FFDC) . A
methodology for decreasing the need for the
reproduction of user failures by capturing the
data associated with a failure as soon as it is
detected. The FFDC methodology includes
defensive programming, code instrumentation,
event tracing, and logging facilities supported
by FFST tools.

First Failure Support Technology (FFST) . A set
of functions that applications can use for
problem determination. FFST functions include
logging and displaying errors and messages,

formatting and routing generic alerts, and
generating data dumps.

File Services . A Workplace core shared service
that provides a fi le system framework for
multiple logical and physical file systems.

Fileset . The largest unit of a storage device
that is managed by Workplace file services. A
storage device can be organized into one or
more file sets. A fileset is subdivided into
directories, which may contain files and other
sub directories. Each fileset has a root
directory.

File system . In Workplace architecture,
software that supports storing data on a storage
device. File systems manage the physical
locations of data on the storage devices for
applications. File systems also manage file I/O
operations and control the format of the stored
data.

Folder . A directory as represented on the OS/2
desktop.

Font . The characters available for text with a
given set of attributes.

Framework . Software package used to provide
application programmers with a consistent, easy
to use set of services. Framework exports an
API for a set of functions that can be provided
by multiple software vendors.

Framework service provider . Code that
performs the functions associated with a set of
service provider interfaces (SPIs). A framework
exports an API to client applications. It
translates the API to a service provider
interface (SPI) that can be supported by multiple
service providers. This enables applications to
work with service providers from multiple
vendors and frees programmers from the need
to use a different set of interfaces each time a
new product of a given class is introduced.

Glossary 153

G
Generation . The number of copies away from
the original.

Glyph . A code page has several entries which
contain different symbols. These symbols
usually include letters, numbers and special
characters. Each of these symbols in a code
page is called a glyph.

Glyphlist name . The glyphlist name is the name
that identifies a set of character glyph names
and font index sequence of the character glyph.

Graphics Adapter Device Driver (GRADD) . A
hardware specific device driver with specific
code to exploid the accelerated features of the
hardware adapter.

Graphic . Any pictorial representation of
information.

Graphical Hardware Interface (GHI) . An
interface that provides information to the
GRADD.

Graphical user interface (GUI) . A type of
computer interface consisting of a visual
metaphor of a real world scene, often of a
desktop. Within that scene are icons
representing objects, that the user can access
and manipulate with a pointing device.

Graphics (video) . Text or pictorial artwork
created by a variety of means, such as
electronic generated graphics software and the
pressed onto the video-discs.

Graphics engine . The drawing engine for a
system. It manages display resources such as
colormaps and bitmaps. The interface between
the graphics transportation protocols and the
presentation (display) and printer device
drivers.

Graphics Programming Interface (GPI) . Part of
Presentation Manager which provides the

means used by application to do graphics
request.

Graphics transportation protocols . The method
by which graphics data is communicated
between a client (application side) and a server
(graphics engine).

H
Hardware Resource Manager . A component of
the IBM Microkernel that provides services for
configuration , access, and management of
hardware to user level device drivers in the
Microkernel Services run time environment.

Hertz . A measure of frequency equivalent to
cycles per second.

Host . A host is a ″large″ computer which acts
as a ″host″ for terminals or workstation PCs with
terminal function.

HPFS. High Performance File System. HPFS
provides long file name support and fast access
to very large disk volumes.

I
Icon . A pictorial representation of a function
that you can select to carry out this function.

Identification . Identification of a DP user to the
system with a user ID (Name or Personal-Nr).

IFS. Installable file system, the mechanism in
OS/2 that permits users to have multiple file
systems active at the same time. Installable file
systems are loaded during system startup and
are attached to storage devices that they have
formatted. File system requests for a storage
device is directed to the file system that
formatted that device.

Interface . Hardware and/or software that links
systems, programs, or devices.

154 OS/2 Warp (PPC)

Installation Services . A core shared service
that provides a common installation facility for
Workplace.

Internationalization Services . A Workplace core
shared service that provides functions to enable
national language support.

Interprocess communication (IPC) . In the
Workplace architecture, the asynchronous
messaging facility for cooperating subsystems
to communicate through ports that provides the
basis for the Workplace client-server system
model.

I/O. Input/Output: pertaining to a device that
performs input and/or output operations.

IPL . Initial Program Load; the initialization of a
computer.

Image . A still picture or one frame.

Interlace . The technique of using more than
one vertical scan to reproduce a complete
image. In television, a 2:1 interlace is used,
giving two vertical scans per frame. One scan
will be odd lines, the other will be even lines.

K
KB . Kilobyte: 1024 bytes.

Kernel . See Microkernel.

Kernel security token . Each client is tagged
with a security token in kernel address space.
The token is set only by trusted code and
represents the user ′s credentials.

Kilohertz (kHz) . Thousands of cycles per
second.

L
Local Area Network (LAN) . A data network
located on the user′s premises in which serial
transmission is used for direct data
communication between workstations.

LAN . Local Area Network - local network
consisting of server(s), the actual network and
PCs as workstations. Safe Guard Professional
OS/2 secures LANs.

LAN Transport Services . A Workplace core
shared service that provides standard Local
Area Network transport layer protocol stacks.

Legacy code . For operating systems,
applications developed for earlier environments
that must be supported by any new
environment.

Link . (1) A logical connection, (2) A physical
connection, (3) An interconnection between data
or programs.

Linear Executable Format . The object module
format used by OS/2 on Intel platforms.

Little endian . See endian.

Loader Services . A Workplace core shared
service that provides program loading functions
for both personality neutral and personality
dependent tasks.

Logical File System . A component of Workplace
File Services that provides a consistent view of
multiple Physical File Systems. The Logical File
System provides path resolution and other
services that are independent of the on-disk
format of data.

LPT . Parallel interface to attach a printer,
streamer, etc.

Glossary 155

M
Machine readable information . Text information
subject to international translation
considerations.

Message Interface Generator . A Workplace tool
that generates low level remote procedure calls
between a client and server process using the
microkernel IPC mechanism. The code that is
generated includes routines to pack and unpack
the messages used to communicate between
processes.

Message Queue . Part of PM application that
contains all the messages coming from System
Input Queue.

Microkernel . In the Workplace architecture, the
component of the IBM Microkernel Product that
runs in the most privileged state of the
computer and controls the basic operation of
the machine. It includes only those functions
required to provide a set of abstract processing
environments and to permit applications to work
together as clients and servers. These
environments are IPC, ports, tasks, threads, and
virtual memory management.

Microkernel Services . The system services
provided with the IBM microkernel product.
There are three classes of services: Kernel
services, Shared services Device services.

Migrate . (1) To move data from one storage
media to another, (2) To change to a new
operating environment.

Module . Program module which takes over a
specific function. Example: logging in a linear
file on the server, or logging in a local ring
buffer file. Modules can be swapped by the
system administrator.

Multi-user . Pertaining to serial or concurrent
use by more than one user. Capable of
distinguishing between different users and
assigning individual user ownership of
information.

Multi-tasking . A technique that allows several
processes to appear to run simultaneously,
even though the computer only has one CPU.
This is achieved by sequentially switching the
CPU between tasks.

Multiplexer . A device that interleaves the
transmission of several input signals over a
connection such that the input signals can be
recovered.

Multiprocessor . A processing unit consisting of
two or more independent processors acting as
parallel.

MVM Personality . The Workplace personality
that manages the collection of Virtual x86
machines. The MVM personality provides
DOS/Windows/DPMI program compatibility on a
PowerPC. It manages and supports execution of
multiple x86 DOS and Windows programs (in
real mode and protected mode) each in its own
Virtual x86 machine.

N
Name Services . A core shared service that
provides a programming interface for its client
to store and access transient or persistent
system and state information in the global name
space. It exports APIs to its clients and defines
SPIs for name service providers.

Name Services entry attribute . Entry
information required by Workplace Name
Services for each object it manages. It consists
of three descriptors: class identifier, attribute
name, and attribute value.

Name Services mount . A point or node in a
client ′s name space tree established by a name
service provider and implemented as a sub tree
in the name space.

Name space . A hierarchical (tree) structure of
nodes, with one distinguished node called the
root. Each node is labeled by a distinct,
non-empty string of characters, called a

156 OS/2 Warp (PPC)

component name. Nodes are directories or
leaves. Leaves are terminal nodes that
represent an entity identified by a mach port:
file, device, root of a fileset, user name. Each
node may have a list of attributes and access
control. A name space is assigned naming rules
during creation.

Network . (1) A network of devices and software
connected for information interchange, (2) An
arrangement of modes and connecting branches
to interconnect computers, terminals and
workstations.

National Language Support (NLS) . The
modification or conversion of a United States
English product to conform to the requirements
of another language or country. This cam
include the enabling or retrofitting of a product
and the translation of nomenclature, MRI or
documentation of a product.

Node . In a network , a point at which one or
more units are connected. Each node has a
network address.

O
Object . (1) Resource of the DP system, such as
files, interfaces, networks, etc. (2).A visual
component of a user interface that a user can
work with to perform a task.

Object linking and embedding (OLE) . An
application protocol established by Microsoft
Corp. that allows objects created by one
application to be linked to or embedded in
objects created by another application.

Object module . A binary executable or data
component or both resulting from source
assembly or compilation, or from secondary
linkage of such object modules.

OEM. Equipment sold by another manufacturer.

OS2CHAR . A component of the OS/2
Presentation Manager which processes input for
OS/2 sessions. It provides a common set of

video code to implement both full screen and
windowed VIO.

P
Panel . The set of information displayed on the
screen of a display station.

Password . In computer security, a string of
characters used to gain access to a computer
file or system, during sign-on or at a later time.
A PIN can be considered as a password.

Path . (1) In a network, any route between two
nodes, (2) The route traversed by information
exchanged between two network devices, (3) A
command in DOS related to the path through its
(sub)directory structure to reach a file.

Path resolution . The resolution of a path to the
correct file services entity (directory or file).

Pause Function . ″Logoff″ for a short work
interruption. The screen is blanked, the
keyboard can only be used for special entries
and the work station is locked. To continue
work, the user who triggered the pause, must
log on again.

Personal Computer Memory Card International
Association (PCMCIA) . A non profit technical
standards and trade association established to
develop a common format for integrated circuit
PC Cards. PCMCIA standards describe the
physical requirements, electrical specifications,
and software architecture for these cards. The
key elements of the PCMCIA software
architecture are Socket Services and Card
Services.

Pel . Picture element. The smallest building
block that a screen or bit-mapped image can
display. Pel and pixel can be used
interchangeably.

Personality . An operating system dependent
application execution environment that
corresponds to a traditional operating system
such as OS/2, DOS, or AIX.

Glossary 157

Personality dependent (PD) . Code that depends
on APIs or services provided by a Workplace
personality service.

Personality neutral (PN) . Code that is operating
system independent because it depends only on
APIs provided by the IBM microkernel product
or other microkernel services and does not use
any APIs or services provided by a personality
service.

Pipe services . A Workplace core shared
service that implements named and unnamed
pipes with OS/2 semantics.

Pixel . A single point of an image, having a
single pixel value.

Physical File System (PFS) . A Workplace
component that manages the on disk storage,
indexing, mounting, and recovery of data. The
File Services framework supports the
installation of multiple Physical File Systems.
Examples of Physical File Systems iclude FAT,
HPFS, and CDROM.

PM Shield . Part of PM that is resnposible of
impelementing a Presentation Manager window
for the session. It manges the user interface of
each of the windows it supports. It contains the
window procedure for this window.

PMI File . A file that contains data and
commands necessary to provide support for
modes beyond VGA in a non-BIOS environment.
The information is used by VIDEOPMI to support
display adapter.

PMWIN. Part of Presentation Manager which is
responsible for creating, maintaining and
destroying windows on the PM desktop.

Pop-up . A window which appears on the screen
to display text, graphics, messages, or
documents.

Port . In the Workplace architecture, a
unidirectional asynchronous communication
channel between a client and a server. A port
has a single receiver and may have multiple
senders. If a reply is provided to a service
request a second port must be used.

Power Management . A software subsystem
that extends battery life in portable computer
systems and conserves electrical energy for all
non-battery powered systems.

Presentation device drivers . Device drivers
that process the high level function calls to the
Presentation Manager interface and
communicate with physical device drivers or the
display hardware.

Presentation Manager (PM) . The Workplace
services that presents a graphics based
interface to applications.

Presentation device drivers . Device drivers
that process the high level function calls to the
Presentation Manager interface and
communicate with physical device drivers or the
display hardware.

Presentation Driver (PD) . Device-dependent
tools used by Graphics Engine to map its
graphics layout. Presentation Driver will be
different for every hardware supported.

Presentation Manager (PM) . The Workplace
services that presents a graphics based
interface to applications.

Presentation Space (PS) . A data structure
which contains the device-independent output.
This is the place which graphic images are
created before being sent to an output device.

Protocol . Rules and agreements for
communication between devices.

158 OS/2 Warp (PPC)

R
RAM . Random Access Memory: Memory where
data can be written and read directly.

Reuse . This is the recreation of the original
status of a file, the main memory or the swap
file after it has been deleted or after the user
has logged off.

Resolution . The ability of an image reproducing
system to reproduce fine detail.

Role . Role which the user plays, particularly
with regard to rights administration. A role is
assigned specific administrative rights, e.g.
system administrator, auditor, accessory or
simple user.

ROM . Read Only Memory; Memory to store
programs or data permanently.

S
Scanner . A device which performs scanning.

Schema . The data-definition part of a database
table.

Seamless Windows . A Windows application that
runs in OS/2 desktop, side by side with OS/2
applications and other Windows applications.

Server . On a LAN, a station that provides
services to other stations; for example, file
server, print server, and security server.

Service manager . Installation programs,
remote administrators, or other types of clients
that can interact with the state of frameworks
and service providers through the Name
Services.

Session . The period of time that a network
connection lasts, including the establishment
and release of the connection.

Shared service . A client library that exports an
API to personality neutral and personality

dependent client applications and an optional
server component. The server may be
personality dependent.

Software Configuration Utility . One of the
util it ies distributed with the workstation security
services program for configuring security
servers and device drivers.

Software Drawing for Non-Accelerated Graphic
Operations (SOFTDRAW) . A generic graphics
library used for software simulation.

Sub-directory . A directory contained within
another directory in the fi le system hierarchy.

Subject . A subject is a user or process which
accesses objects (files etc.).

Subsystem . A secondary or subordinate
system, usually capable of operating
independently.

T
Token . Bit string (combination of bits) to enable
the execution of a specific operation.

Token-ring . An IBM network with a ring
topology that passes tokens from one attaching
device to another.

Translation layers (GRE2VMAN,GDI2VMAN) . A
layer that exists between the Graphics Engine
and the Video Manager used for translation of
engine commands to VMI commands.

U
Unicode . Code that is independent of language
and culture, supports multiple simultaneous
character sets.

User . User in a system.

Userid . User identification, name for a user in
the system.

Glossary 159

V
Video Manager (VMAN) . A component used as
a central point of distribution, for coordinationg,
serializing and dispatching certain commands to
different components of the GRADD model.

Video Manager Interface (VMI) . An Interface
that provides information to the Video Manager.

VIDEOPMI. A shared madule which
communicates to/from the protected mode video
device driver (BVHSVGA) as well as the virtual
video device driver (VSVGA).

VIO API . Set of functions that is used to create
application in OS/2 full-screen.

Virtual Device Driver . A module that virtualizes
hardware and ROM BOS services on a per-VDM
basis. They provide support for direct
manipulation of memory-mapped I/O devices,
and the direct programming of I/O ports.

Virtual DOS Machine (VDM) . The place that
each DOS application runs in v86 mode. It is a
v86-mode variant of an OS/2 single-thread
process. Each VDM executes a DOS application
and emulates the functions of DOS in a virtual
PC environment.

Vital product data . Data that describes the
hardware and software parts of the system.

Virtual Video (VVIDEO) . A component of
Multiple Virtual Machine (MVM) that is
responsible for routing all the video requests to
hardware.

Virtual Video Device Driver . It is used by DOS
applications which are running in a DOS
session. It will provide direct manipulation of
memory-mapped video I/O devices. It manages
all access to the video memory, registers and
video ROM BIOS.

Virtual Windows (VWIN) . A virtual device driver
that allows a Windows program to run on the
OS/2 desktop. It is the link that passes
messages from on GUI to another so that both
environments can know about and adjust for
each other.

W
Wildcards . Placeholders for any number of
other characters. An asterix (*) stands for a
permitted set of any other characters. A
question mark (?) stands for any other single
character.

Window Procedure . Part of PM applications
which is responsible for managing messages
coming to the window object.

Windows Seamless Device Driver . It is a
standard Windows display device driver. It is
derived from the standard Windows driver by
conditional compile

WinShield . It is the Windows counterpart of
PMShield. WinShield serves a complementary
purpose, maintaining Workplace Shell windowing
state information for its VDM.

Workstation . A terminal or microcomputer that
often is connected to a main frame or a
network, at which the user can perform
applications.

X
XGA . Extended graphics array. A high
resolution display with a display matrix (pels) of
1,024 x 768 at 256 colors. XGA can also provide
more colors with reduced resolution (640 x 480
at 65,536 colors).

160 OS/2 Warp (PPC)

List of Abbreviations

ABI Application Binary Interface

ACL Access Control List

ADC Analog-to-Digital Converter

AIX Advanced Interactive
eXecutive

ANSI American National Standards
Institute

APAR Authorized Program Analysis
Report

API Application Programming
Interface

AT Advanced Technology

AVSS Audio-Visual Sub System

BGA Business Graphics Adapter

BIDI Bi-directional

BIOS Basic Input Output System

BMP Bit-Mapped Graphics

BVH Base Video Services

CAE Common Application
Environment

CD Compact Disc

CD-ROM Compact Disk - Read-Only
Memory

CGA Color Graphics Adapter

CID Configuration, Installation, and
Distribution

CORBA Common Object Request
Broker Architecture

COSE Common Operating System
Environment

CPU Central Processor Unit

DDE Dynamic Data Exchange

DDK Developer Driver Kit

DFS Distributed File System

DIB Device Independent Bitmap

DLL Dynamic Link Library

DMA Direct Memory Access

DOS Disk Operating System

DPI Dots Per Inch

DSOM Distributed SOM

DSP Digital Signal Processor

DVI Digital Video Interactive

EA Extended Attribute

EGA Enhanced Graphics Adapter

EISA Extended Industry Standard
Architecture

ELF Executable and Linking Format

EnDive Enhanced Direct Interface to
Video Extension

FAT File Allocation Table

FFDC First Failure Data Capture

FFST First Failure Support
Technology

GDI2VMAN Graphics Design Interface to
Video Manager

GHI Graphics Hardware Interface

GIF Graphics Interchange Format

GPIB General Purpose Interface Bus
(IEEE 488)

GRADD Graphics Adapter Device
Driver

GRE2VMAN Graphics Engine to Video
Manager

GUI Graphical User Interface

HPFS High Performance File System

IBM International Business
Machines

 Copyright IBM Corp. 1995 161

IEEE Institute of Electrical and
Electronical Engineers

IFF Interchange File Format

IFI Intelligent Font Interface

IFS Installable File Systems

IOCA Image Object Content
Architecture

IPC Interprocess Communication

IRQ Interrupt Request

ISA Industry Standard Architecture

ISDN Integrated Services Digital
Network

ISO International Organization for
Standardization

ISV Independent Software Vendors

Kbps Kilobytes per second

kHz Kilohertz

LAN Local Area Network

LSB Least Significant Bit

LX Linear Executable Format

M-O Magneto-Optical

MB Megabyte (1,048,576 bytes)

Mbps Megabits per second

MBps Megabytes per second

MC Micro Channel

MCA Micro Channel Architecture

MCD Media Control Driver

MCGA Modified Color Graphics
Adapter

MIDI Musical Instrument Digital
Interface

MIG Message Interface Generator

MME Multimedia Extension

MMIO Multimedia I/O Services

MMPM/2 Multimedia Presentation
Manager/2

MRI Machine Readable Information

MSB Most Significant Bit

MTC Midi Time Code

NLS National Language Support

OEM Other Equipment Manufacturer

OLE Object Linking and Embedding

OS/2 Operating System/2

PC Personal Computer

PC AT Personal Computer Advanced
Technology

PC XT Personal Computer Extended
Technology

PCMCIA Personal Computer Memory
Card International Association

PD Personality Dependent

PD Presentation Driver

PEL Picture Element

PFS Physical File System

PM Presentation Manager

PM Presentation Manager

PMDD Presentation Manager Display
Driver

PMGPI Presentation Manager Graphics
Programming Interface

PMGRE Presentation Manager Graphics
Engine

PMI Protect Mode Interface

PMVDD Presentation Manager Video
Device Driver

PMWIN Presentation Manager Window

PN Personality Neutral

POSIX Portable Operating System
Interfaces for Computer
Environments

PS/1 Personal System/1

PS/2 Personal System/2

R/W Read/Write

162 OS/2 Warp (PPC)

RAM Random Access Memory

RAS Reliabil ity, Availabil ity,
Serviceabil i ty

REXX Restructured Extended
Executor language

RISC Reduced Instruction Set
Computer

ROM Read-Only Memory

RPQ Request for Price Quotation

SCSI Small Computer Systems
Interface

SDK Software Developers Kit

SMP Symmetric Multi Processing

SOM System Object Module

SPI Service Provider Interface

SQL Structured Query Language

SVGA Super Video Graphics Adapter

TCB Trusted Computing Base

VDH Virtual Device Helper

VDM Virtual DOS Machine

VGA Video Graphics Adapter

VMAN Video Manager

VMI Video Manager Interface

VPD Vital Product Data

VRAM Video Random Access Memory

VVMI Virtual Video Manager
Interface

VWIN Virtual Windows

WORM Write Once Read Many

WPS Work Place Shell

XGA Extended Graphics Array

XMA Expanded Memory Array

XMS Extended Memory Specification

XOM Extended Open Management

List of Abbreviations 163

164 OS/2 Warp (PPC)

Index

Special Characters
.LIB files 142
.OBJ files 142

Numerics
16 bit OS/2 applications 141
32-bit VIO Calls 101
32bit OS/2 applications 141
4019 122
4029 122
8086 Environment 103

A
Abbreviat ions 161
Ability to transfer product fi les 135
Abnormal Termination 72
Access 149
Access control list 28, 149
Access Method 149
Access Object 149
Access Time 149
Accessing hardware 7
Accessing the Name Space 30
ACL 28
Acronyms 161
active sessions 33
Adapter 149
Adding Features to the System 134
additional features 134
Address 149
address space 21
Administration Object 149
Adobe Composite font-fi le format 109
Adobe NCF font-file format 109, 111
Adobe Type 1 font-file format 109, 111
AIX 131, 149
alarm 8
Albert 149

algori thm 9, 149
Alias 149
Alias nodes 29
Allocating Virtual Memory 21
Alternate personality 149
Analog data 149
anonymous memory 26
anonymous node 30
Anonymous Nodes 30
API 33, 48, 55, 59, 60, 63, 65, 66, 128, 141, 149
API calls 51
APIs 25, 46
Apple 1
application 120
Application binary interface 149
Application Development 141
Application program 149
Application Support 141
Applications 126
Arithmetic exception 19
ARPPC 142
ASCII 68, 149
ASPPC 141
assembler 141
Assignment of processors 8
Assignment of threads and tasks 8
Asymmetric mult iprocessing 149
Asynchronous I/O 149
ATM IFI font driver font

Adobe NCF font-file format 111
Adobe Type 1 font-file format 111

Audio 32
Audit 150
Auditor 150
Authenticate 150
Authentication 150
Authentication server 150
Authorize 150
Available Modes 133

 Copyright IBM Corp. 1995 165

B
backout of service 132
base paging space 67
Base Video Handler 150
Base Video Services 98—108, 150

OS/2 Warp for PowerPC, Text Mode 101
OS2CHAR 102
PMI File 100, 101
Summary 119
VIDEOPMI 98—101, 102
Virtual Video 103
Virtual Windows 106

Base Video Subsystem 99
Basic Volume Manager 47
Batch File 150
BD 142
Big endian 150
Binary dumper 142
BIOS 150
BIOS scancode 38
Bitmap 150
BL 23
boot 27, 150
Boot device 67
Boot Drive 150
Boot Loader 23
boot manager facil ity 131
Boot message logging 25
Boot Partition 130, 131
Boot Protection 150
boot t ime 29
BOOT.CFG 67
Bootloader 67, 131
bootstrap loader 65
Bootstrap port 17
bootstrap task 23, 69
BounceKeys 40
Bus 150
Bus Walkers 24
BVHSVGA 99, 102
BVHWNDW 99
BVM 47
Byte 150

C
C-Threads 20
Card Services 150
Carnegie Mellon University 1, 5
catalog 132
CD-ROM 42, 132, 150
CD-ROM Physical File System 46
CD-ROM XA 150
CDROM 67
Central Service Task 150
Channel 151
channels 10
Checksum 151
child sessions 32
child task 17
CHKDSK 45
CID 129, 135, 151
CID administrator 133
CID and Unattended Installation Support 135
CID keywords 133
Client 151
Client credentials 151
Client Library 151
Client Side 52
Client side handle management 57
client tasks 7
Client-server model 151
cl ient/server 5
Client/Server System 151
Clip board 151
Clock manipulation 7
Clocks 8
Clustered multiprocessing 151
CMOS 151
Code Page 110
Code Point 110
codepage 38, 151
Codepage Characters 36
collection of direct data 13
collection of resources 12
COM 151
COM_DIRECT_ACCESS 143
Combined font 116, 117, 118

166 OS/2 Warp (PPC)

Command line support 135
communication 10
compiler 141, 142
CONFIG.SYS 55, 67, 139
configurabil i ty 132
configuration 23, 55, 129, 151
Configuration change errors 139
Configuration changes 139
Configuration information 26, 123
configuration manager 9
Configuration, Installation, and Distribution

(CID 135
Configuration/Enablement 126
Console 32
containing task 10
context menu 132, 133, 134
Control 35, 58
Control Events 38
control port 7, 8, 55
Controller 151
Conventional Memory 151
Core shared services 151
CRC 151
create the object 139
Creating Kernel Threads and Tasks 20
Creating reports 126
Creating Virtual Address Spaces 21
creation 58
Creation and 8
current locator 39

D
Data browsing 125
DDE 107
DDK 151
Dead-Name state 12
Deadkeys 37
Debug 65
Debugging support 65
dedicated threads 20
default memory manager 7
Default Pager 24, 26
DeskJet 122

desktop 133
Desktop management interface 124, 127
Development 133
Development mode 133
Device 58, 151
Device 0 36
Device 1 36
Device 2 36
device code access 9
Device Context 152
Device Control Port 55
Device Driver Interface (DDI) 152
Device Drivers 24, 31, 131
device services 31, 69
Device Specific font 112
device support 1, 31
Directories 26
Directory 152
Directory nodes 29
disk partit ioning 138
DISKCOMP 45
DISKCOPY 45
Diskette drive 32
Dispatcher 152
Distributed File System 152
Distributed SOM 152
DLL 63
DLLs 52
DMA 9
DMI 124, 127, 128
DMI MIF browser 123
DMI Standard 128
DMTF 127
Domain 152
Dominant personality 152
DOS 119, 152
DOS_BUFFERS 143
DOS_CODEPAGE 143
DOS_COUNTRY 143
DOS_FCBS 143
DOS_FCBS_KEEP 143
DOS_INSTALL 143
DOS_MESSAGE_FILE 143
DOS_NUMLOCK 143

Index 167

DOS_STACKS 143
DOS_SWITCHES 143
DOSCALLS.DLL 52, 63, 64
DOSCALLS.LIB 56
DosShutdown 70, 71
Dot Matrix 121
double paging 26
DPMI_DOS_API 145
Drag and Drop Install 132
Dump formatter 123
Dynamic Data Exchange 152
Dynamic Link Library 67, 142, 152

E
EBCDIC 152
ELF 25, 66, 142
ELF Archiver 142
ELF dumper 142
ELFDUMP 142
EMS_LOW_OS_MAP_REGION 145
Emulator 152
Enabling portability 6
Endian 152
Epson 122
Error log daemon 124
Error Logging 124
Error messages 138, 139
Error records 127
Ethernet 32
EV_ABSMOVE 37
EV_ABSPOS 37
EV_RELMOVE 37
EV_RELPOS 37
EV_REPEAT 37
EV_SCAN 37
EV_SCANDOWN 37
EV_SCANUP 37
Event and window services 2, 32, 35, 56, 58,

152
Event Server 103, 152
Event Services 34
Event tracing 125, 126
events 32

EWS 32
exception 19
Exception Handling 64
Exception Port Set 55
Exception processing 19
Executable and Linking 66
Executable and linking format 152
Executable Objects 62
execute access 22
Exit APIs 139
Extended attribute 153
Extended data 153
Extended Link Format 25
Extensible memory management 5
Extension 153
external memory manager 42
External Memory Managers 25
External Server Ports 55
external servers 54

F
FAPI 141
FAT 42, 131
FDISK 129
Feature ID 139
Feature Install 131, 132, 139
Feature Install Catalog 132, 133
feature installation 132
Feature Installer 135
feature selection 139
FFDC 124, 125
FFST 124, 125, 138
FFST Configurator 123
FFST daemon 124
FFST error logging 138
File 58
File I/O Support 63
fi le server 24
fi le servers 27
File Service Client 41
File services 2, 24, 40, 62, 69, 153
File Services Client 40
File Services Pager 42, 43

168 OS/2 Warp (PPC)

File Services Server 40, 42
File system 153
file system extension 67
File System Utilit ies 45
file systems 1
File transfer 139
File transfer functions 139
Files 26
Fileset 153
Filter GRADD 96, 153
f i rmware 131
First Failure Data Capture 124, 125, 153
First Failure Support Technology 124, 125, 138,

153
First Failure Support Technology (FFST) 138
Folder 153
Font 153
Font Transfer Area (FTA) 116
Font-file formats

Adobe Composite font-fi le format 109
Adobe NCF font-file format 109, 111
Adobe Type 1 font-file format 109, 111
Font-file formats 117
IBM Combined font-fi le format 109, 111
IBM UNI font-file format 109, 111
OS/2 PM font-file format 109, 111

Fonts 108—118
ATM IFI font driver font 111
Device Specific font 112
Font-file formats 109, 111
Graphics Engine fonts 111, 115
IBM Combined font 116, 117
IFI fonts 115
New APIs 118
Physical font 117
Private fonts 117
Public fonts 117
Summary 119

foreground 33
FORMAT 45, 129
Formatt ing 127
framework 41, 42, 153
Framework service provider 153
FSCALLS.DLL 53

G
GCM 62
GDI2VMAN 95
General system management 127
Generation 154
GENERIC_HW_SUPPORT 146
Global Coerced Memory 62
Global shared heap 117
Global Shared Memory 62
Glyph 110, 116, 117, 154
Glyph Index Translation 110
Glyphlist 110
Glyphlist name 154
Glyphlists

PM383 110
PMCHT 110
PMJPN 110
PMKOR 110
PMPRC 111
SYMBOL 110
UNICODE 110

GRADD 88, 89, 90, 94, 96
GRADD Model 89, 90, 93—97

Filter GRADD 96
GDI2VMAN 95
GRADD 88, 89
Graphics Adapter Device Driver

(GRADD) 90, 96
GRE2VMAN 89, 90, 95
Softdraw 91, 96
Video Manager (VMAN) 89, 90, 95, 108
Virtual VMI VDD (VVMI) 95

GRADDs 93
Graphic 154
Graphical Hardware Interface (GHI) 154
Graphical user interface 154
Graphics 154
Graphics Adapter Device Driver (GRADD) 100,

154
Graphics Engine 89

OS/2 Warp Connect (PowerPC Edition),
structure diagram 90

OS/2 Warp for PowerPC, summary 91
Presentation Driver (PD) 92

Index 169

Graphics Engine (continued)
Summary 119

Graphics Engine fonts 115
IBM Combined font-fi le format 111
OS/2 PM font-file format 111

Graphics Engine heap 117, 118
Graphics Hardware Interface 94, 96
Graphics Hardware Interface (GHI) 94, 96
Graphics Subsystem

Base Video Services 98
Graphics Engine 89
Overview 87—89
PM Video Device Driver 92
PMGPI 88
PMGRE 88
PMWIN 88
Presentation Driver (PD) 89
Softdraw 89
Summary 118—119

Graphics transportation protocols 154
GRE2VMAN 89, 90, 95
GSM 62

H
Handle management 56
hard disk 23, 67
Hard Error 33
Hardware Resource Manager 24, 154
HCOPPC 141
Hertz 154
Host 154
Host Machines 7
Host Ports 55
Hotkey Processing 38
Hotkeys 39
HP DeskJet 122
HP LaserJet 122
HP PaintJet 122
HPFS 42, 131, 154
HRM 24
HW_ROM_TO_RAM 148
HWEntry function 96

I
I/O 155
I/O related hardware 9
I/O Support 9
I/O support and interrupt management 6
IBM Combined font 116, 117
IBM Combined font-fi le format 109, 111
IBM microkernel 1, 5, 16, 43, 130
IBM UNI font-file format 109, 111
IBMNULL 122
Icon 154
ID′s signature 13
IDE 32
Identif ication 154
Identity Traps 19
IDLE_MAX_SLEEP_TIME 148
IDLE_SENSITIVITY 148
IDLE_TIMEOUT 148
IFI fonts 115
IFS 154
Image 155
Indices 117
initial task 23
initial thread 53
Initialization process 124
Initializing the Microkernel Services 23
Input Port Messages 35
Install log 138
Install Object 132, 133
Install Objects 132, 133, 134
Installation 123, 129, 135
installation failed 138
Installation Services 155
installed software 135
Instance heap 117
Instruction Set Translator (IST) 104
INT 10h 103
INT 66h 106
INTEL 141
Intelligent Font Interface (IFI) 108, 115
Inter Process Communication 10, 11
Interface 154
Interlace 155

170 OS/2 Warp (PPC)

Internal install functions 139
internal threads 20
Internationalization Services 155
Interprocess communication 5, 6, 155
interrelationships 33
Introduction 1
Inventory Information 134
Inventory Object 132, 133, 134
inventory objects 132, 133, 134
IPC 6, 10, 11, 48
IPL 155

K
KB 155
kernel 25, 155
kernel level debugging 122
Kernel security token 155
kernel-managed 9
keyboard 32, 34, 37
Keyboard scancode 35
Keyboard Translation 38
Kilohertz 155

L
LAN 49, 155
LAN Transport Services 155
large address space 6
Large address spaces 6
LDPPC 142
Leaf nodes 29
Legacy code 155
level of software 135
LIBCMXPG.DLL 53
LIBCXPG.DLL 53
LIBFS 41
LIBMK.DLL 53
libraries 52
lightweight entity 17
Linear Executable Format 155
Link 155
Linker 142
links 27, 28

litt le endian 66, 155
Loader 65
Loader Services 155
Local Area Network 155
Locator Buttons 37
Locator Conversion 39
Locator Position 37
Locator record 35
Logged process information 135
Logical Devices 35
Logical File System 42, 155
Logical printer 121
Logical Utility File Services 46
Logical Volume Manager 47
Low level remote debug 125, 127
LPT 155
LUFS 46

M
Machine readable information 156
Machine state 17
maintenance of software 132
Major system changes 138
maximum prior i ty 18
Media Preparation 129, 138
memory 23
Memory management 60
memory manager 9, 21, 62, 63
Memory object 6, 8, 20
memory objects 45
Memory Related OS/2 API 63
Memory Suballocation Package 63
memory-addressing 13
memory-object management. The 45
message 15
Message Interface Generator 15, 23, 156
Message Logger 24
Message management 65
message passing interface 15
Message Queue 156
Message Send and Receive Traps 19
message transfer 11
Message Transmission 13

Index 171

message-passing 14
message-receipt 12
Messages 13
Metaware 141
microkernel 5, 7, 11, 15, 21, 22, 59, 87, 131, 156
Microkernel Raised Exceptions 64
Microkernel Services 22, 131, 156
Microkernel Services server management 25
microkernel task 10
MIF 128
MIG 15, 23
Migrate 156
migrat ion 131
Module 156
Module Install 123
Motorola all iance 1
mouse 32
mouse messages 34
MouseKeys 40
MSP 63
Multi Event Input 36
multi-boot facil ity 131
Mult i-event 35
Multi-tasking 156
Mult i-user 156
Multiple message threads 53
multiple operating personalit ies 5
Multiple pager threads 53
multiple ports 10
multiple senders 10
multiple threads 17
Multiple Virtual DOS Machine 73
Multiple Virtual Machine 72
Multiple Virtual Machine (MVM) 102, 103
Mult iplexer 156
Multiprocessing 5
mult iprocessor 7, 156
mult i threaded programming 20
multithreaded task 53
Mult i threading 5
MVM 72, 119
MVM Architecture 75
MVM DOS Settings 143
MVM Personality 156

MVM Server 76

N
name borders 27, 28
name port 8
name server 27, 29, 30, 48
Name Services 25, 156
Name Services entry attribute 156
Name Services mount 156
name space 10, 27, 29, 156
name space path 29
National Language Support 157
Network 157
Network resource access 6
No-More-Senders state 12
Node 157
Nodes 28
nonrestartable aborts 15
Notification 35
Notifications 12
Novell 49
NS_NODE_TYPE_ALIAS 30
NS_NODE_TYPE_DIRECTORY 30
NS_NODE_TYPE_LEAF 30
ns_root_dir 29
NTFS 131

O
Object 157
object class 133
Object creation 139
Object creation and class registration 139
Object linking and embedding 157
Object module 157
OEM 101, 157
Omni driver 122
One exception thread 53
One-Way Inter Process Communication 15
one-way message 13
Open Software Foundation 44
Open Software Foundations 1
OS/2 119

172 OS/2 Warp (PPC)

OS/2 applications 141
OS/2 Control Program 51
OS/2 desktop 134
OS/2 Functions 51
OS/2 initialization 69
OS/2 PM font-file format 109, 111
OS/2 Server 34, 40, 51, 56, 58, 62, 65, 69, 72
OS/2 tasklist 33
OS/2 Warp
OS/2 Warp (Intel) kernel 51
OS/2 Warp Connect (PowerPC Edition) MVM

Environment 75
OS/2 Warp for PowerPC

bvs, summary 119
Font object design 112
fonts, summary 119
Full-screen 102, 105
Glyphlist support 110
Graphis Engine, summary 91
gre, summary 119
Message Interface Generator (MIG) 106
PM Video Device driver Model 97
pmvdd, summary 119
Text Mode 101
VDM 106
Virtual Windows 106

OS2CHAR 102, 157
OSF 44

P
page faults 60, 62
paging space 26, 60, 62
Panel 157
Parallel port 32
Parallelism 6
Partit ioning 130
Password 157
Path 157
Path resolution 157
Paths and Name Resolution 30
Pause Function 157
PCL5 121
PCMCIA 32, 157

PD 26
Pel 157
Per task data area 59
Performance data 126
Performance monitoring 125, 126
Permanent 27
Personal Computer Memory Card International

Association 157
personalit ies 22
Personality 24, 157
Personality Dependent 26
Personality dependent (PD) 157
Personality Neutral 26
Personality neutral (PN) 158
personality neutral server 48
PFS 44, 158
Physical File System 42, 43, 44
Physical File System (PFS) 158
Physical File System Interfaces 44
Physical font 117
Physical Memory 9
Physical Processors 7
Physical resource management 6, 7
Physical Utility File Services 46
Physical Utility File Systems 46
physical video device 32
Pipe 58
pipe data 48
pipe server 48
Pipe Server and the Name Space 48
Pipe services 3, 48, 158
Pipes 63
Pixel 158
PM Scancodes 37
PM Shield 158
PM Video Device Driver 92—98

Summary 119
PM383 110
PMCHT 110
PMGPI 88, 154
PMGRE 88, 90
PMI File 100, 101, 158
PMJPN 110
PMKOR 110

Index 173

PMPRC 111
PMWIN 88, 158
PMWIN.DLL 35
PN 26
PN_BOOT_DEV 68
PN_BOOT_FS 68
PN_FILE_NAME 68
Pointer Painting 39
pointer posit ion 34
POLICY_FIFO 18
POLICY_RR 18
POLICY_TIMESHARE 18
Pop-up 158
Popups 33
Port 10, 11, 12, 158
Port addresses 26
port class 10
Port Classes 11
Port driver 121
Port drivers 121
port interface 42
port name space 10, 11, 16
Port names 11
port r ight 6
port right names 13
port rights 10, 11
Port Sets 12
port space 7
portabil i ty 1
ports 10, 45
Portspace 10
Postscript 121, 122
Power Management 158
PowerPC assembler 141
PowerPC platform 141
PPDS 122
preclude cycles 27
Presentation device drivers 158
Presentation Driver (PD) 89, 158
Presentation Manager 98, 158
Presentation space 116
Presentation Space (PS) 158
Presentation Task 106
previous level 135

pr imary part i t ion 131
Print dr iver 121
Print dr ivers 121
Printer Description Language 121
Printer Driver Support 122
printer server 120
Printing from DOS and Windows 122
Printing Services 119
Priority 17
Priority and Scheduling 18
Private fonts 117
Private memory 61
private name space 30
private/shared memory 60
privi leged port 10
procedure call interface 15
Procedure tracepoints 139
Process 58
Process creation 59
processor sets 7, 8, 18
products and services 135
programmable APIs 127
protection 22
Protocol 158
prototype task 16
Providing statistics 126
PTDA 59
Public font 117
Public fonts 117

Q
QUECALLS.DLL 53
Queue 121
queue component 58
Queues 64

R
RAM 159
Raster IFI font driver font

IBM UNI font-file format 111
Rasterization 92
read access 22

174 OS/2 Warp (PPC)

read message thread 54
REALTIME clock 8
Receive and send 11
Receive right 11, 12
RECOVER 45
Redirected installation 135
register the class 139
relationships 35
remote pipe names 49
remote server 49
Removing Features 134
RepeatKeys 39
reply port 14
Resolution 159
resolution process 29
resource management 17
resource manager 9
Resource Monitoring 125, 126
Resource scheduling parameters 18
response file 133
Response file support 135
Reuse 159
Role 159
ROM 159
Root Directory 27, 132
root directory node 29
Root Name Server 24, 26, 30, 48, 69
root name space 27
rooted tree 27
RPC 10, 12, 13, 14, 15, 48
RUN 55
RUNSERVER 55, 56

S
scancodes 38
Scanner 159
Scheduling control 8
Scheduling Support Traps 19
Schema 159
Screen group 33
screen groups 32, 33
SCSI 32
Seamless Windows 106, 159

security model 11
security token 16
selections 132
selective install 132
selective installation 138
semaphore 58
semaphore t imeout thread 53
Semaphores 63
send messages 34
Send right 12
Send rights 11
Send-once right 12
Serial port 32, 127
SerialKeys 40
Server 159
Server Interface Module 15
Server Port Set 55
Server side 53
Server Thread Support 15
Service manager 159
service provider 29
Service providers 26
serviceabil i ty 123
Serviceabil ity tools 124
services framework 40
Session 159
Session management 33, 58
session management events 33
Session Manager 33
Session Support 58
session watchers 33
sessions 32, 34
SET 55
set of threads 16
Setting the Protection/Inheritance Attribute 22
settings pages 133
Shared Library Management 25
Shared memory 61
shared memory services 66
Shared Service 72, 159
Shutdown 69
Shutdown Invoked by User 70
Shutdown Services 34
Shutdown via CTRL-ALT-DEL 71

Index 175

signature collection 13
single loader 65
single receive right 10
single receiver 10
single root 27
single unit 12
Sleep delay 8
SlowKeys 40
SMSTART 124
Softdraw 89, 91, 93, 95, 96, 159
Software Configuration Util ity 159
Software simulation 96, 97
Source and target fi lenames 139
source media 132
SPD 126
specific type of exception 19
Spool Job 121
Spooler objects 120
Standard Keywords 135
Stanza files 69
Startup 67
state transition 12
Statistics gathering 7
StickyKeys 39
stream-of-instruction 17
Structure of the Name Space 27
Sub-directory 159
Subject 159
subproduct 135
Subsystem 159
Suspend count 18
SYMBOL 110
synchronous 10
SYS 45
SYSLEVEL 123
Syslog Display 123
System dump 125, 126
System dump configurator 123, 127
System Management 122, 124
System Migration 131
System Partition 130, 131
System Performance Display program 126
System reboot 7
System Services 31, 131

system software 132
systems management 123
Systems Management Folder 125

T
Task manager 24
Task-self port 16
Tasking 58
tasks 16
Tasks and threads 6, 16
termination 58
The Bootstrap Task 68
The File Services Pager or external memory

manager 44
The Logical File System part of the File Services

Server 44
The microkernel interfaces 45
thread 10, 58, 70
Thread and Port Model 43
thread creation 59
Thread Information Maintenance 59
thread interface 42
Thread Query And Control 60
Thread security token 18
thread specific data 59
thread support 59
Thread Termination And Cleanup 60
thread-specific port rights 17
thread-specific type of exception 19
threads 7, 8, 16, 17, 45
TIB 59
time and resolution 8
Timeout Ports 55
Timer 58
timer t imeout thread 54
ToggleKeys 40
Token 159
Token-ring 32, 159
toolkit 141
Trace 126
Trace daemon 124
Trace facility 126
Trace formatter 123

176 OS/2 Warp (PPC)

TRACEFMT 126
Tracing Installation Problems 138
TRANSLATED_CACHE_SIZE 148
Translation Layers 93, 95, 159
Traps and Exception Processing 18
TRCUST 126
Triggering 127
two-way 13
Type 1 Scancodes 37
Type 41 Partition 130

U
UFS 46
ULS keyboard 38
unicode 38, 44, 110, 159
Unicode Characters 36
unidirectional 10
uninstall 133, 134
Unit of CPU utilization 6
Unit of resource allocation 6
Universal Glyph List (UGL) 116
UNIX 5
unlimited messages 12
Unsupported CID Keywords in OS/2 Warp

Connect (PowerPC Edition) 136
User 133, 159
User (Client) Header Module 15
User (Client) Interface Module 15
user level 22, 31
User level servers 6
Userid 159
Using Virtual Address 0 22
Utility File Services 46

V
value counter 8
variable resolution 139
VDM 106
V F S + + 44
VIDE0_8514A_XGA_IOTRAP 148
Video Manager (VMAN) 160
Video Manager Interface 94, 95

Video Manager Interface (VMI) 160
VIDEO_FASTPASTE 148
VIDEO_ONDEMAND_MEMORY 148
VIDEO_RETRACE_EMULATION 148
VIDEO_VRAM_USAGE 148
VIDEOPMI 98—101, 102, 160
Views 134
VIO API 99, 101, 160
virtual address 21
virtual address space 10, 16, 21
Virtual Device Driver 160
Virtual DOS Machine (VDM) 160
virtual DOS machines 65
Vi r tua l F i le Sys tem++ 44
Virtual keys 37
Virtual Machine 103
vir tual memory 9, 21
Virtual memory management 6, 20
virtual memory system 9
Virtual pages 21
Virtual Video 103—105
Virtual Video (VVIDEO) 160
Virtual Video Device Driver 160
Virtual Windows 108

Message Flow 107
Messages 106
presentation task 106
Send rights 106
Virtual Windows 106
VWIN Central Services Task 107

Virtual Windows (VWIN) 106
Vital Product Data 127, 160
VM_PROT_EXECUTE 22
VM_PROT_NONE 22
VM_PROT_READ 22
VM_PROT_WRITE 22
VMAN 89, 90, 93, 95, 108
VMI 95
VMIEntry function 95
Volume Manager 47
VPD 127
VSVGA 99
VVMI 93, 95
VWIN Central Services Task 107

Index 177

W
Wildcards 160
Win32s 141
Windows applications 119
Windows NT 131
Windows Seamless Device Driver 160
WinShield 160
WinShutdownSystem 70
Workplace Shell 132
Workplace Shell folder 133
Workstation 160
Workstation identif ication information 123

X
XGA 160

Z
z order 33

178 OS/2 Warp (PPC)

IBML

Printed in U.S.A.

SG24-4630-00

/XRL/1

Artwork Definitions

id File Page References

ITSLOGO 4630SU
i i

Table Definitions

id File Page References

CONFIG1 30MVM
84 84

CONFIG2 30MVM
84 85

TW1 30GUI
89

TW2 30GUI
89

TW3 30GUI
89

THDR 30GUI
111 112

THS1 30GUI
119 119

TS1 30GUI
119 119

TS2 30GUI
119 119, 119, 119

TS3 30GUI
119

DOSSET 30APP1
143 143, 143

DOSSET1 30APP1
143 143

Figures

id File Page References

INTRO 30INTRO
2 1

1, 2, 5, 87
30IPCLK 30MK

14 2
14

30NSA 30MK
28 3

27, 29
SRVR 30CP

52 5
51

PRTS 30CP
54 6

54, 64
FHNDL 30CP1

57 7
56, 57

VMEM 30CP1
61 8

/XRL/2

61
MVM1 30MVM

74 9
73

MVM2 30MVM
75 10

75
MVM3 30MVM

81 11
80

PMGSUB 30GUI
88 12

88
PMGRE 30GUI

90 13
89

PMGREPD 30GUI
92 14

91
GRADMOD 30GUI

94 15
93, 95, 96, 96, 96

PPCMOD 30GUI
98 16

97
PMBSRV 30GUI

99 17
99, 102

PMBSRVT 30GUI
103 18

102
VVIDF1 30GUI

105 19
104

VWINF 30GUI
107 20

107
PPCFONT 30GUI

109 21
109

PPCARCH 30GUI
114 22

113, 114
91PRT1 30PRT

120 23
120

30INS1 30INSTA
130 24

130

/XRL/3

Headings

id File Page References

NOTICES 4630FM
xiii Special Notices

ii
BIBL 4630PREF

xvi Related Publications
30INTRO 30INTRO

1 Chapter 1, Introduction
xv

30MK 30MK
5 Chapter 2, The IBM Microkernel

xv, 2
30MKPRM 30MK

7 2.1.1, Physical Resource Management
30MKIO 30MK

9 2.1.2, I/O Support
30MKIPC 30MK

10 2.1.3, Inter Process Communication (IPC)
54, 78

30MKTT 30MK
16 2.1.4, Tasks and Threads

59
30MKVMM 30MK

20 2.1.5, Virtual Memory Management
30MKEMM 30MK

25 2.2.3, External Memory Managers
60

30MKDP 30MK
26 2.2.4, Default Pager

30MKRNS 30MK
26 2.2.5, Root Name Server

30SERV 30SERV
31 Chapter 3, System Services

xv, 3
30DS 30DS

31 3.1, Device Support
30EWS 30EWS

32 3.2, Event and Window Services
58, 70, 103

NEEDS 30EWS
39 3.2.2.4, Keyboard Special Needs

35
30FS 30FS

40 3.3, File Services
30PIPE 30PIPE

48 3.4, Pipe Services
30OS2 30OS2

51 Chapter 4, OS/2 Functions
xv, 3

30CP 30CP
51 4.1, OS/2 Server

51
HNDL 30CP1

56 4.1.3.1, Handle Management
63

PFLT 30CP1
62 Page Faults for Guard Pages and Executable Objects

65
EXCP 30CP1

64 4.1.3.10, Exception Handling
62

30STRT 30CP2
67 4.1.5, Startup

/XRL/4

77
30BTLD 30CP2

67 4.1.5.1, Bootloader
65

SHUT 30CP2
69 4.1.6, Shutdown

30MVM 30MVM
72 4.2, The MVM Environment

51, 101
30MVM5 30MVM

84 4.2.9, Windows Support
30MVM6 30MVM

84 4.2.10, Changes to The Command Set
30MVM8 30MVM

86 4.2.11, Changes to the MVM DOS Settings
30GUI 30GUI

87 4.3, Graphics Subsystem
3, 51

91GSOVR 30GUI
87 4.3.1, Graphics Subsystem Overview

91GRE 30GUI
89 4.3.2, Graphics Engine

87
91PMVDD 30GUI

92 4.3.3, PM Video Device Driver
87, 87, 108

91BASE 30GUI
98 4.3.4, Base Video Services

87, 102
91PMTXT 30GUI

101 4.3.4.1, Text Mode in OS/2 Warp Connect (PowerPC edition)
99

91VVID 30GUI
103 4.3.4.2, Virtual Video (VVIDEO)

99
91VWIN 30GUI

106 4.3.4.3, Virtual Windows (VWIN)
91FONTS 30GUI

108 4.3.5, Fonts
91TSUMM 30GUI

118 4.4, Graphics Subsystem Summary
30PRT 30PRT

119 4.5, Printing Services
51

30SYS 30SYS
122 4.6, System Management.

51
30INSTA 30INSTA

129 Chapter 5, Installation
xv, 3, 67

30INS2 30INSTA
129 5.1, Media Preparation

30INS3 30INSTA
131 5.2, Feature Install

76, 123
30DRAG 30INSTA

132 5.2.2, Drag and Drop Install
30INS4 30INSTA

134 5.3, Inventory Information
30APS 30APS

141 Chapter 6, Application Support
xv, 3

30APP1 30APP1
143 Appendix A, Changes to MVM DOS Settings

xv, 86

/XRL/5

Index Entries

id File Page References

WARP 4630SU
i (1) OS/2 Warp

OS2WPPC 4630SU
i (1) OS/2 Warp for PowerPC

91, 97, 101, 102, 105, 106, 106, 106, 110, 112, 119, 119,
119, 119

PM 4630SU
i (1) Presentation Manager

FONTS 4630SU
i (1) Fonts

109, 111, 111, 111, 111, 111, 112, 115, 115, 116, 117,
117, 117, 117, 117, 117, 118, 119

BVS 4630SU
i (1) Base Video Services

98, 100, 101, 101, 101, 102, 102, 103, 106, 119
MVM 4630SU

i (1) Multiple Virtual Machine
GRE 4630SU

i (1) Graphics Engine
90, 91, 92, 119

PMVDD 4630SU
i (1) PM Video Device Driver

119
GRADDM 4630SU

i (1) GRADD Model
88, 89, 89, 89, 90, 90, 90, 91, 95, 95, 95, 95, 96, 96, 96,
108

VWIN 4630SU
i (1) Virtual Windows

106, 106, 106, 106, 106, 107, 107
GSUB 30GUI

87 (1) Graphics Subsystem
87, 88, 88, 88, 89, 89, 89, 89, 92, 98, 118, 119

FFF 30GUI
109 (1) Font-fi le formats

109, 109, 109, 109, 109, 109, 111, 111, 111, 111, 111, 117
GLYPLST 30GUI

110 (1) Glyphlists
110, 110, 110, 110, 110, 110, 111

GREFONT 30GUI
111 (1) Graphics Engine fonts

111, 111
ATMIFI 30GUI

111 (1) ATM IFI font driver font
111, 111

RASIFI 30GUI
111 (1) Raster IFI font driver font

111

/XRL/6

Tables

id File Page References

VDDTAB1 30MVM
83 1

83
MVMTAB2 30MVM

85 2
84

TGRE 30GUI
91 3

91
PPCFONT 30GUI

112 4
ALGORIT 30GUI

116 5
116

TSUM 30GUI
119 6

118
KEYTAB 30INSTA

136 7
136

APP1TAB 30APP1
143 8

Processing Options

Runtime values:
Document fileid ... SG244630 SCRIPT
Document type .. USERDOC
Document style ... SDELIB
Profile ... EDFPRF40
Service Level .. 0022
SCRIPT/VS Release ... 4.0.0
Date .. 95.12.28
Time .. 09:59:56
Device .. 3820A
Number of Passes .. 4
Index ... YES
SYSVAR D .. YES
SYSVAR G ... INLINE
SYSVAR V .. ITSCEVAL
SYSVAR X .. YES

Formatting values used:
Annotation .. NO
Cross reference listing .. YES
Cross reference head prefix only .. NO
Dialog ... LABEL
Duplex .. YES
DVCF conditions file ... (none)
DVCF value 1 .. (none)
DVCF value 2 .. (none)
DVCF value 3 .. (none)
DVCF value 4 .. (none)
DVCF value 5 .. (none)
DVCF value 6 .. (none)
DVCF value 7 .. (none)
DVCF value 8 .. (none)

/XRL/7

DVCF value 9 .. (none)
Explode .. NO
Figure list on new page ... YES
Figure/table number separation ... YES
Folio-by-chapter .. NO
Head 0 body text .. Part
Head 1 body text .. Chapter
Head 1 appendix text ... Appendix
Hyphenation .. NO
Justification ... NO
Language ... ENGL
Keyboard ... 395
Layout .. OFF
Leader dots ... YES
Master index ... (none)
Partial TOC (maximum level) .. 4
Partial TOC (new page after) .. INLINE
Print example id′s .. NO
Print cross reference page numbers ... YES
Process value ... (none)
Punctuation move characters,
Read cross-reference fi le .. (none)
Running heading/footing rule .. NONE
Show index entries ... NO
Table of Contents (maximum level) ... 3
Table list on new page .. YES
Title page (draft) alignment ... RIGHT
Write cross-reference fi le .. (none)

Imbed Trace

Page 0 4630SU
Page 0 4630VARS
Page 0 4630FM
Page i 4630EDNO
Page ii 4630ABST
Page xiii 4630SPEC
Page xiii 4630TMKS
Page xiv 4630PREF
Page xviii 4630ACKS
Page xx 30INTRO
Page 3 30MK
Page 30 30SERV
Page 31 30DS
Page 32 30EWS
Page 40 30FS
Page 47 30PIPE
Page 48 30OS2
Page 51 30CP
Page 56 30CP1
Page 65 30CP2
Page 72 30MVM
Page 86 30GUI
Page 119 30PRT
Page 122 30SYS
Page 128 30INSTA
Page 139 30APS
Page 142 30APP1
Page 148 4630GLOS
Page 160 4630ABRV
Page 178 4630EVAL

	OS/2 Warp (PowerPC Edition) A First Look
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	ITSO Redbooks on the World Wide Web (WWW)
	Acknowledgments

	Chapter 1. Introduction
	Chapter 2. The IBM Microkernel
	Elements of the IBM Microkernel
	Physical Resource Management
	I/ O Support
	Inter Process Communication (IPC)
	Tasks and Threads
	Virtual Memory Management
	Elements of the IBM Microkernel Services
	Initializing the Microkernel Services
	Task Manager
	External Memory Managers
	Default Pager
	Root Name Server

	Chapter 3. System Services
	Device Support
	Event and Window Services
	Screen Group and Session Management
	Event Services
	File Services
	File Service Client
	File Services Server
	Thread and Port Model
	File Services Pager
	Physical File System (PFS)
	Volume Manager
	Pipe Services

	Chapter 4. OS/ 2 Functions
	OS/ 2 Server
	OS/ 2 Server Architecture
	Configuration
	Components Of The OS/ 2 Server
	Loader
	Startup
	Shutdown
	The MVM Environment
	OS/ 2 Warp (Intel) Multiple Virtual DOS Machine
	OS/ 2 Warp Connect (PowerPC Edition) MVM Environment
	Installation
	Multiple Virtual Machine Server
	EM86 (8086 Emulation)
	Instruction Set Translator
	DOS Emulation
	Virtual Device Drivers
	Windows Support
	Changes to The Command Set
	Changes to the MVM DOS Settings
	Graphics Subsystem
	Graphics Subsystem Overview
	Graphics Engine
	PM Video Device Driver
	Base Video Services
	Fonts
	Graphics Subsystem Summary
	Printing Services
	Spooler Objects
	Printing from DOS and Windows
	Printer Driver Support
	System Management.
	Installation
	System Management Initialization Process
	Serviceability Tools
	Vital Product Data

	Chapter 5. Installation
	Media Preparation
	Partitioning
	System Migration
	Feature Install
	Feature Install Catalog
	Drag and Drop Install
	Install Objects
	Inventory Objects
	Inventory Information
	CID and Unattended Installation Support
	Standard Keywords
	Tracing Installation Problems
	Media Preparation
	Feature Install

	Chapter 6. Application Support
	Application Development

	Appendix A. Changes to MVM DOS Settings
	Glossary
	A
	B C
	D
	E
	F
	G
	H
	I
	L
	K
	M
	N
	P
	O
	R
	S T
	U
	V
	W
	X
	List of Abbreviations
	Index
	Special Characters
	Numerics
	A
	B C
	D
	E
	F
	G
	I
	H
	K
	M
	L
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

