
2026/02/13 18:02 1/6 New Executable file format

osFree wiki - http://osfree.org/doku/

Offset Size Name Description

00h WORD e_magic 0x4d, 0x5a. This is the “magic number” of an EXE file. The first byte
of the file is 0x4d and the second is 0x5a.

02h WORD e_cblp
The number of bytes in the last block of the program that are
actually used. If this value is zero, that means the entire last block is
used (i.e. the effective value is 512).

04h WORD e_cp Number of blocks in the file that are part of the EXE file. If [02-03] is
non-zero, only that much of the last block is used.

06h WORD e_crlc Number of relocation entries stored after the header. May be zero.

08h WORD e_cparhdr

Number of paragraphs in the header. The program's data begins
just after the header, and this field can be used to calculate the
appropriate file offset. The header includes the relocation entries.
Note that some OSs and/or programs may fail if the header is not a
multiple of 512 bytes.

0Ah WORD e_minalloc
Number of paragraphs of additional memory that the program will
need. This is the equivalent of the BSS size in a Unix program. The
program can't be loaded if there isn't at least this much memory
available to it.

0Ch WORD e_maxalloc
Maximum number of paragraphs of additional memory. Normally,
the OS reserves all the remaining conventional memory for your
program, but you can limit it with this field.

0EH WORD e_ss
Relative value of the stack segment. This value is added to the
segment the program was loaded at, and the result is used to
initialize the SS register.

10h WORD e_sp Initial value of the SP register.

12h WORD e_csum Word checksum. If set properly, the 16-bit sum of all words in the
file should be zero. Usually, this isn't filled in.

14h WORD e_ip Initial value of the IP register.

16h WORD e_cs Initial value of the CS register, relative to the segment the program
was loaded at.

18h WORD e_lfarlc Offset of the first relocation item in the file.

1Ah WORD e_ovno Overlay number. Normally zero, meaning that it's the main
program.

1Ch WORD e_res[ERES1WDS]

/* In-disk and In-memory module structure. See 'Windows Internals' p. 219 */

struct new_exe {

 WORD ne_magic; /* Signature word EMAGIC */
union {
 struct {
 BYTE ne_ver; /* Version number of the linker */
 BYTE ne_rev; /* Revision number of the linker */
 };
 WORD count; /* Usage count (ne_ver/ne_rev on disk) */
};
 WORD ne_enttab; /* Entry Table file offset, relative to the
beginning of
 the segmented EXE header */
union {

Last update: 2024/09/22
09:40 en:docs:tk:formats:newexe http://osfree.org/doku/doku.php?id=en:docs:tk:formats:newexe&rev=1726998016

http://osfree.org/doku/ Printed on 2026/02/13 18:02

 WORD ne_cbenttab; /* Number of bytes in the entry table */
 WORD next; /* Selector to next module */
};
union {
 DWORD ne_crc; /* 32-bit CRC of entire contents of file.
 These words are taken as 00 during the
calculation */
 struct {
 WORD dgroup_entry; /* Near ptr to segment entry for DGROUP */
 WORD fileinfo; /* Near ptr to file info (OFSTRUCT)*/
 };
};
 WORD ne_flags; /* Flag word */
 WORD ne_autodata; /* Segment number of automatic data
segment.
 This value is set to zero if SINGLEDATA
and
 MULTIPLEDATA flag bits are clear,
NOAUTODATA is
 indicated in the flags word.

 A Segment number is an index into the
module's segment
 table. The first entry in the segment
table is segment
 number 1 */
 WORD ne_heap; /* Initial size, in bytes, of dynamic
heap added to the
 data segment. This value is zero if no
initial local
 heap is allocated */
 WORD ne_stack; /* Initial size, in bytes, of stack
added to the data
 segment. This value is zero to indicate
no initial
 stack allocation, or when SS is not equal
to DS */
 DWORD ne_csip; /* Segment number:offset of CS:IP */
DWORD ne_sssp; /* Segment number:offset of SS:SP.
 If SS equals the automatic data segment
and SP equals
 zero, the stack pointer is set to the top
of the
 automatic data segment just below the
additional heap
 area.

 +--------------------------+
 | additional dynamic heap |
 +--------------------------+ <- SP

2026/02/13 18:02 3/6 New Executable file format

osFree wiki - http://osfree.org/doku/

 | additional stack |
 +--------------------------+
 | loaded auto data segment |
 +--------------------------+ <- DS, SS */
 WORD ne_cseg; /* Number of entries in the Segment
Table */
 WORD ne_cmod; /* Number of entries in the Module
Reference Table */
 WORD ne_cbnrestab; /* Number of bytes in the Non-Resident
Name Table */
 WORD ne_segtab; /* Segment Table file offset, relative to
the beginning
 of the segmented EXE header */
 WORD ne_rsrctab; /* Resource Table file offset, relative to
the beginning
 of the segmented EXE header */
WORD ne_restab; /* Resident Name Table file offset, relative
to the
 beginning of the segmented EXE header */
 WORD ne_modtab; /* Module Reference Table file offset,
relative to the
 beginning of the segmented EXE header */
 WORD ne_imptab; /* Imported Names Table file offset,
relative to the
 beginning of the segmented EXE header */
 DWORD ne_nrestab; /* Non-Resident Name Table offset,
relative to the
 beginning of the file */
 WORD ne_cmovent; /* Number of movable entries in the Entry
Table */
 WORD ne_align; /* Logical sector alignment shift count,
log(base 2) of
 the segment sector size (default 9) */
 WORD ne_cres; /* Number of resource entries */
 BYTE ne_exetyp; /* Executable type, used by loader.
 02h = WINDOWS */
 BYTE ne_flagsothers; /* Operating system flags */
 char ne_res[NERESBYTES]; /* Reserved */

};

On-disk segment entry struct new_seg { WORD ns_sector; /* Logical-sector offset (n byte) to the
contents of the segment data, relative to the beginning of the file. Zero means no file data */ WORD
ns_cbseg; /* Length of the segment in the file, in bytes. Zero means 64K */ WORD ns_flags; /* Flag
word */ WORD ns_minalloc; /* Minimum allocation size of the segment, in bytes. Total size of the
segment. Zero means 64K */ }; In-memory segment entry struct new_seg1 {

 WORD ns1_sector; /* Logical-sector offset (n byte) to the
contents of the segment
 data, relative to the beginning of the
file. Zero means no

Last update: 2024/09/22
09:40 en:docs:tk:formats:newexe http://osfree.org/doku/doku.php?id=en:docs:tk:formats:newexe&rev=1726998016

http://osfree.org/doku/ Printed on 2026/02/13 18:02

 file data */
 WORD ns1_cbseg; /* Length of the segment in the file, in
bytes. Zero means 64K */
 WORD ns1_flags; /* Flag word */
 WORD ns1_minalloc; /* Minimum allocation size of the
segment, in bytes. Total size
 of the segment. Zero means 64K */
 WORD ns1_handle; /* Selector or handle (selector - 1) of
segment in memory */

};

struct new_segdata {

 union {
 struct {
 WORD ns_niter;
 WORD ns_nbytes;
 char ns_iterdata;
 } ns_iter;
 struct {
 char ns_data;
 } ns_noniter;
 } ns_union;

};

struct new_rlcinfo {

 WORD nr_nreloc;

};

struct new_rlc {

 char nr_stype;
 char nr_flags;
 WORD nr_soff;
 union {
 struct {
 char nr_segno;
 char nr_res;
 WORD nr_entry;
 } nr_intref;
 struct {
 WORD nr_mod;
 WORD nr_proc;
 } nr_import;
 struct {
 WORD nr_ostype;
 WORD nr_osres;

2026/02/13 18:02 5/6 New Executable file format

osFree wiki - http://osfree.org/doku/

 } nr_osfix;
 } nr_union;

};

#define NR_STYPE(x) (x).nr_stype #define NR_FLAGS(x) (x).nr_flags #define NR_SOFF(x) (x).nr_soff
#define NR_SEGNO(x) (x).nr_union.nr_intref.nr_segno #define NR_RES(x) (x).nr_union.nr_intref.nr_res
#define NR_ENTRY(x) (x).nr_union.nr_intref.nr_entry #define NR_MOD(x)
(x).nr_union.nr_import.nr_mod #define NR_PROC(x) (x).nr_union.nr_import.nr_proc #define
NR_OSTYPE(x) (x).nr_union.nr_osfix.nr_ostype #define NR_OSRES(x) (x).nr_union.nr_osfix.nr_osres

#define NRSTYP 0x0f #define NRSBYT 0x00 #define NRSSEG 0x02 #define NRSPTR 0x03 #define
NRSOFF 0x05 #define NRPTR48 0x06 #define NROFF32 0x07 #define NRSOFF32 0x08

#define NRADD 0x04 #define NRRTYP 0x03 #define NRRINT 0x00 #define NRRORD 0x01 #define
NRRNAM 0x02 #define NRROSF 0x03 #define NRICHAIN 0x08

#if (EXE386 == 0)

#define RS_LEN(x) (x).rs_len #define RS_STRING(x) (x).rs_string #define RS_ALIGN(x) (x).rs_align

#define RT_ID(x) (x).rt_id #define RT_NRES(x) (x).rt_nres #define RT_PROC(x) (x).rt_proc

#define RN_OFFSET(x) (x).rn_offset #define RN_LENGTH(x) (x).rn_length #define RN_FLAGS(x)
(x).rn_flags #define RN_ID(x) (x).rn_id #define RN_HANDLE(x) (x).rn_handle #define RN_USAGE(x)
(x).rn_usage

#define RSORDID 0x8000

#define RNMOVE 0x0010 #define RNPURE 0x0020 #define RNPRELOAD 0x0040 #define RNDISCARD
0xF000

#define NE_FFLAGS_LIBMODULE 0x8000

struct rsrc_string {

 char rs_len;
 char rs_string[1];

};

struct rsrc_typeinfo {

 WORD rt_id;
 WORD rt_nres;
 DWORD rt_proc;

};

struct rsrc_nameinfo {

 WORD rn_offset;
 WORD rn_length;

Last update: 2024/09/22
09:40 en:docs:tk:formats:newexe http://osfree.org/doku/doku.php?id=en:docs:tk:formats:newexe&rev=1726998016

http://osfree.org/doku/ Printed on 2026/02/13 18:02

 WORD rn_flags;
 WORD rn_id;
 WORD rn_handle;
 WORD rn_usage;

};

struct new_rsrc {

 WORD rs_align;
 struct rsrc_typeinfo rs_typeinfo;

};

#endif

#pragma pack(pop)

#ifdef __cplusplus } /* extern “C” */ #endif

#endif

From:
http://osfree.org/doku/ - osFree wiki

Permanent link:
http://osfree.org/doku/doku.php?id=en:docs:tk:formats:newexe&rev=1726998016

Last update: 2024/09/22 09:40

http://osfree.org/doku/
http://osfree.org/doku/doku.php?id=en:docs:tk:formats:newexe&rev=1726998016

