
GENODE
Operating System Framework 21.05

Platforms
Norman Feske

Contents

Contents

1 Introduction 3

2 Porting Genode to a new SoC 4
2.1 Preparatory steps . 9

2.1.1 Licensing considerations . 9
2.1.2 Selecting a suitable SoC . 10
2.1.3 Start by taking the known-good path 11
2.1.4 Setting up an efficient development workflow 12

2.2 Getting acquainted with the target platform 14
2.2.1 Getting a first impression . 15
2.2.2 The U-Boot boot loader . 19

2.3 Bare-metal serial output . 24
2.4 Kernel skeleton . 34

2.4.1 A tour through the code base . 34
2.4.2 A new home for the board support 41
2.4.3 Getting to grips using meaningful numbers 48
2.4.4 A first life sign of the kernel . 55

2.5 Low-level debugging . 57
2.5.1 Option 1: Walking the source code 58
2.5.2 Option 2: One step of ground truth at a time 60
2.5.3 Option 3: Backtraces . 62

2.6 Excursion to the user land . 64
2.7 Device access from the user level . 73

2.7.1 Using a GPIO pin for sensing a digital signal 74
2.7.2 Driving an LED via a GPIO pin . 81
2.7.3 Responding to device interrupts 84

2.8 One Platform driver to rule them all . 90
2.8.1 Platform driver . 90
2.8.2 Session interfaces for accessing pins 95
2.8.3 PIO device driver . 96
2.8.4 Dynamic configuration testing . 98
2.8.5 Cascaded authorities . 100
2.8.6 Integrated test scenario . 101

2.9 Pruning device trees . 103
2.10 Linux device-driver environment (DDE) 109

This work is licensed under the Creative Commons Attribution +
ShareAlike License (CC-BY-SA). To view a copy of the license, visit
http://creativecommons.org/licenses/by-sa/4.0/legalcode

2

1 Introduction

This document complements the Genode Foundations book with low-level hardware-
related topics. It is primarily intended for integrators and developers of device drivers.
Before studying the Genode Platforms material, it is highly recommended to give the
Genode Foundations book a read. The book can be downloaded at https://genode.org.

In this first edition, the document features a practical guide for the steps needed to
bring Genode to a new ARM SoC. The content is based on the ongoing Pine Fun article
series at https://genodians.org. Note that the document is not set in stone. We plan to
continuously extend it with further practical topics as we go.

3

https://genode.org
https://genodians.org

2 Porting Genode to a new SoC

We get repeatedly asked about the principle steps needed to enable Genode - and in
particular Sculpt OS 1 - for various ARM-based hardware platforms. The variety of
SoCs is too great to give a general answer. However, drawing from our experience
with the porting Genode to several ARM-based platforms such as NXP’s i.MX8, this
chapter provides a practical guide for the steps of such a porting endeavour.

The guide is based on an article series at https://genodians.org. It is written in an in-
formal style from the perspective of a developer carrying out the work, taking a specific
board - namely the Pine-A64-LTS single board computer - as a playground. The code
discussed throughout this chapter is available at the following public Git repository.

Git repository of the Allwinner board support

https://github.com/nfeske/genode-allwinner

The guide is not carved in stone. It will be progressively enhanced with further infor-
mation - e. g., details about various classes of drivers - over time. Should you happen
find important topics missing or spot mistakes or have suggestions for improving the
material, please don’t hesitate to send your feedback to norman.feske@genode-labs.com.

Goals Our goal would be to get the bare-bones Sculpt system up and running on an
ARM SoC not yet supported by Genode. This bare-bones Sculpt system entails

• The principal ability for the user to interact with the system via a graphical user
interface,

• Support for installing and deploying the existing arsenal of Genode components
from regular packages,

• The ability to store information persistently on the device, and

• Network connectivity.

Thanks to Sculpt’s built-in ability to integrate 3rd-party components - including func-
tionality that is traditionally attributed to the core of the operating system - into the
system in the form of packages, this bare-bones system enables a great variety of usage
scenarios.

1https://genode.org/download/sculpt

4

https://genodians.org
https://github.com/nfeske/genode-allwinner
https://genode.org/download/sculpt

Non-goals That said, the following features remain beyond the scope of this docu-
ment because they are either too vendor-specific to be described in a general fashion or
can be realized in the form of supplemental components.

• Hardware-accelerated graphics,

• Audio,

• Power management,

• Mobile data communication,

• Secure boot.

Working steps The work of enabling Genode for a new SoC requires the following
steps in the described order. To give an indicator of the effort to be expected, each step
is accompanied with a rough estimation.

1. Preparing the development testbed

Before the actual development work can start, a few preparations are needed or
at least recommended.

One of our team members typically spends up to one month for this step.

• Building and running a working Linux-based OS on the target board as ref-
erence, following the instructions of the vendor

• Exploration and configuration of the target’s boot mechanism

• Creation of a test-control loop for triggering the booting the target board via
the run tool, serving the boot image over the local network, and obtaining
the log output.

• Familiarization with the available board and SoC-vendor documentation
and the Vendor-specific subsystems in the vendor’s Linux kernel

• Studying the device tree, correlating it with information gathered from the
documentation.

2. Code skeleton for a new SoC

Given the impressions gathered during the preparatory step, we take one of the
SoCs that are already supported by Genode as reference. One should select the
SoC with the most similarities such as the same ARM core revision or the same
interrupt controller. The goal of this step is an almost empty skeleton code of
Genode that gives us a little life sign when booted on the real hardware.

It does not take a seasoned Genode developer longer than two weeks to complete
this step. However, for a developer with no prior experience with Genode’s code

5

base, an additional effort of two weeks for the required familiarization should be
planned for.

• Mirroring the files of another SoC but with empty bodies, (describing roles
of the individual files)

• Creating a bare-bone base-hw kernel ELF image

• Booting the custom image on the target hardware

• Serial output driver

3. Basic kernel functionality

The goal of this step is getting the most basic Genode system scenario to run on
the new SoC. This scenario comprises three components, namely the Genode core
component (including the kernel), the init component, and a test program that
produces some log output.

On this way, one has to overcome the challenges of initializing the kernel, en-
abling the MMU, and exercising the kernel’s IPC and context-switching mecha-
nism. Assuming that the new SoC has the same architecture revision as the ones
already supported by Genode, this step should take no longer than two weeks.

• Enabling the MMU

• Enabling caches

• Memory layout parameters

• Entering and returning from the user land (IPC, context switches)

• Running Genode’s log scenario

4. Support for user-level device drivers

With the principal ability of running multiple user-level components, it is time to
enable preemptive scheduling and the kernel mechanisms needed by user-level
device drivers. Assuming the new SoC uses standard ARM building blocks like
the core-local timer and the GIC interrupt controller as readily supported by Gen-
ode, this step does not entail much risks and should be completed within a week.

However, should the SoC deviate from the beaten track of standard ARM build-
ing blocks, e. g., using a custom interrupt controller, the step may additionally
require the development of an in-kernel driver for such a device. Genode pro-
vides several existing drivers that can be taken as a blue print. Depending of the
quirkiness of the device, the development can take one or two weeks. Fortunately,
vendor-specific timers and interrupt controllers are largely a problem of the past.

• Enabling the in-kernel interrupt controller driver

• Enabling in-kernel timer driver

6

• Definition of I/O resources

• IOMUX configuration (board-specific)

Once the principal support for user-level device drivers is in place, the develop-
ment work can be tackled by multiple developers in parallel.

5. Network driver

We usually plan to spend about one month for enabling a network driver for
Genode. Depending on the complexity of the network controller, the driver may
be ported from the Linux kernel, from the U-Boot boot loader, or written from
scratch.

6. SD-card driver

For driving SD-cards, we usually extend Genode’s custom SD-card driver with
SoC-specific support, which takes usually two weeks. One should be prepared
for device-specific peculiarities though. In some cases, in the presence of flaky
hardware, it took us up to 3 weeks more to reach a stable and performant state.

7. Framebuffer driver

In the past, we used to develop framebuffer drivers from scratch. But nowa-
days, we prefer to reuse the vendor-provided driver code from the Linux ker-
nel to attain feature parity with Linux. That said, depending on the driver, such
porting work still requires substantial manual labour because the driver often
does not only drive one device but multiple (such as power-gating via additional
I2C-connected controllers, or a dedicated HDMI chip). As an indicator for the
expected effort, the i.MX framebuffer driver took us two months to bring to live.

8. USB host-controller driver

Genode’s USB host-controller driver is based on the Linux USB driver. Adding
supplemental support for new SoC should generally possible within one month.
With the USB host-controller driver in place, the actual USB device drivers (e. g.,
for HID and storage) should work out of the box.

As a note of caution, in rare cases, in particular for the Raspberry Pi, the USB host
controller driver can become an almost infinite time sink though.

9. Multi-processor support

Real-world workloads demand multi-processor support. In theory, this should
generally be covered well by Genode’s ARM support as long as the SoC stays
close to ARM’s reference design. However, the bring-up of secondary CPUs,
inter-processor interrupts, and the maintenance of TLB/cache coherence still
poses risks because those topics may involve upcalls to vendor-specific firmware
or may depend on the unexpected vendor-specific boot-time configuration (like

7

the surprise of one CPU core left configured with a different byte order). To stay
on the safe side, one should plan one month for the potential troubleshooting
around these areas.

10. Sculpt OS integration

With the four peripheral drivers in place, Sculpt’s demands on the platform’s
feature set is satisfied. The remaining task is the integration of those drivers into
Sculpt, which should be doable in no more than two weeks.

• Drivers subsystem definition

• Sculpt-manager tweaks

• Configuration

Summary Based on the steps outlined above, the effort seems to be modest but -
given a healthy dose of enthusiasm - quite doable for an individual or a small team.
The biggest risk is the incomplete or lacking documentation for most ARM SoCs.

Granted, such a bare-bone system is still a far cry from a sophisticated product like
a smart phone, which features plenty of additional peripheral devices, an aggressive
power-management regime, GPU-accelerated rendering, or Bluetooth. But once a bare-
bones Sculpt system is ready to run, further device drivers can be developed as regular
components independent from each other, which is the beauty of a component-based
operating system like Sculpt OS.

8

2.1 Preparatory steps

2.1 Preparatory steps

After getting a rough overview of undertaking the port of Sculpt OS to another SoC
in the previous section, let us take a closer look at the first step - taking technical and
non-technical preparations.

For the preparatory work, I recommend taking one month of time. This may sound
excessive but there are good reasons. First, Genode’s tooling deviates from the beaten
tracks known from commodity operating systems. In particular Genode’s run tool is
quite unique and powerful. But it comes at the price of a learning curve. The learn-
ing should not be done as a side activity but requires the focus of the developer. Sec-
ond, the initial steps of enabling a new hardware tend to be fiddly. Especially when it
comes to compiling and testing out a vendor-customized boot loader and Linux kernel
from source, this can become a walk on muddy ground. Without patience or with time
pressure, it can get messy and exhausting. Third, contemplating about non-technical
preparatory aspects like licensing deserves some nights to sleep over it.

2.1.1 Licensing considerations

I see your raised eyebrows. Why bother with software licensing at this point? To pursue
the upcoming steps with as little friction as possible, make up your mind about your
objectives behind pursuing the porting work. The licensing of your code should follow
from that. From the chosen license, in turn, follows the way of how to interact with the
community. Let me illustrate this point with three example scenarios:

No strings attached

Open-source driver code authored by hardware vendors is often published under
a permissive license to make the code broadly usable across projects with differ-
ent open-source and proprietary licenses. Even for code contributed to the GPL-
licensed Linux kernel, some vendors like Intel provide their contributions under
the terms of the permissive MIT or BSD licenses, and thereby allow anyone to
incorporate such code into other operating systems without licensing constraints.
Usually such code is a clean-room implementation developed in-house at the ven-
dor without incorporating 3rd-party code. This approach is preferable whenever
the objective is the highest possible adoption of the code.

Submitting code upstream to the Genode project

A second possible objective may be the integration of your work upstream into
the official Genode project to make the new SoC platform straight-forward to use
for the Genode community and to benefit from the ongoing maintenance of the
code by Genode Labs. However, with this ambition in mind, you need to en-
sure that you and your employer agree with the process of contributing 1 and in

1https://genode.org/community/contributions

9

https://genode.org/community/contributions

2.1 Preparatory steps

particular with the terms of the Genode contributor’s agreement 1, which grants
Genode Labs the right to offer Genode - including your code - under both open-
source and commercial licensing terms.

Pursuing a dual-licensing business

At the other extreme, your objective may be offering the results of your work as
a commercial product, following a dual-licensing business model. In this case,
you may consider publishing the code under the most restrictive copyleft license
possible, along with the option for a commercial license. Or you may even go
as far as considering the Genode Component Public License (GCPL) 2. This route
should be considered only when planning a long-term commitment in actively
productising and supporting your code. Note that the GCPL is no win for the
open-source community beyond Genode.

The path taken has far-reaching ramifications. The ability to incorporate 3rd-party code
into your work. The visibility of your work within the Genode community. The selec-
tion of a suitable place for hosting your code. Community spirit. Or the viability of
contributions by others to your code.

The decision may be taken for different components individually. For example, when
taking the Linux USB stack as the basis for a USB host-controller driver component, this
component naturally inherits Linux’ GPLv2 license. At the same time, your custom in-
kernel timer driver might fit best into the upstream Genode project.

In our experience, taking and openly communicating licensing decisions up front
before starting actual development work reduces possible friction - especially if a legal
department is involved - and avoids wrong expectations.

2.1.2 Selecting a suitable SoC

The question of which particular SoC to select as the basis for your work is of course
closely related with the same objectives as discussed above. You may consider the
following points:

• Costs of the chip and the devices featuring the chip. E.g., if you primarily intend
to accommodate hobbyists, a low-end device might be preferable. But there are
other arguments:

• Availability of accessible hardware featuring the SoC. Many SoCs are available
only in large volumes and thereby end up in consumer devices only. More of-
ten than not, such consumer devices are completely locked down, rendering the
attempt to install a custom operating system moot.

1https://genode.org/community/gca.pdf
2https://genode.org/documentation/articles/component_public_license

10

https://genode.org/community/gca.pdf
https://genode.org/documentation/articles/component_public_license

2.1 Preparatory steps

With accessible hardware, I’m also referring to the availability of development
boards that mirror the architecture of a consumer device but with additional con-
nectors for obtaining serial output, network connectivity, and possibly JTAG.

• Availability and quality of technical documentation. Even for many SoCs popular
in the Linux community - think of the Raspberry Pi or Allwinner devices - public
documentation is sparse or of questionable quality. If you find a “reference man-
ual” of only a few hundred pages online, possibly imprinted with the term “CON-
FIDENTIAL”, it’s probably better to stay away from this chip. A modern SoC has
usually more than 4000 pages of documentation. When browsing through it, look
out for prose and architectural diagrams. Some “reference manuals” are merely
disguised register listings, which are not very insightful.

• Support by the official Linux kernel. Even though most ARM devices run Linux,
many vendors do not even attempt to contribute vendor-specific code upstream
to the Linux project. Should the official Linux kernel features support for a par-
ticular SoC, this is a good sign for the maturity of the open-source drivers. In
contrary, if only a certain whacky vendor kernel is known to work well with the
SoC, it’s probably best to shy away.

• Presence of hardware-based I/O protection (System-MMU). To fully leverage the
advantages of Genode’s architecture, the sandboxing of device drivers is impor-
tant. Otherwise, all device drivers must be considered trusted.

When we originally embraced the i.MX8M SoC, we silently assumed that every
modern 64-bit SoC should feature a System-MMU in our modern times. We even-
tually learned that this is actually not the case for the i.MX8M.

If different variants of one SoC with and without System-MMU are available,
make sure to pick the variant that includes this feature.

2.1.3 Start by taking the known-good path

Even though you may be eager with bringing Genode to the new device, let us first
exercise the device with its known-to work software stack.

1. Usually, development boards come with a Linux-based system pre-installed. Try
it out. Test the functioning of all hardware connectors that are important to you.

2. Chase down the source code of the exact Linux kernel that is pre-installed on your
board. In most cases, this so-called vendor kernel is a customized version of Linux,
with the source code provided at a vendor-specific place. Download it. Follow
the vendor-provided instructions to build it from source. Boot your custom built
Linux kernel on your device.

11

2.1 Preparatory steps

This kernel will serve us as a working reference later. It allows us to cross-
correlate problems between Genode and Linux, obtain traces of Linux device
drivers, or to get hold of system-register states initialized by the Linux kernel
to a working state.

3. Study the device tree of the working Linux kernel and correlate this information
with the documentation. This helps to form a mental picture of the hardware and
to identify possible risks (indicated by your level of confusion) early on.

...slowly leaving the known-good path...

4. Now that you are familiar with the vendor kernel, let’s cross fingers and hope that
the vanilla Linux kernel works just as well. Download the vanilla Linux kernel
and look out for the support for your SoC. In the worst case, you won’t find any.
In the best case, the vanilla kernel works out of the box. In case the vanilla kernel
works well, better use this one a reference for your further work.

2.1.4 Setting up an efficient development workflow

For the few test drives taken until this point, juggling SD-cards is probably fine. But
down the road, you will need to boot your device with custom system image hundreds
of times. Take the time for setting up a convenient test-control loop for your device to
make this work enjoyable.

Explore Genode’s run tool Read Section 5.4 “System integration and automated
testing” of the Genode Foundations book as found at https://genode.org.

Try out the various options with an already supported platform. Browse the files
at tool/run/ to learn about the various backend modules and options. E.g., look at
_tool/run/image/uboot 1 to to demystify the creation of uImage files by Genode.

Run and test the U-Boot loader on your device U-Boot is the de-facto standard
of booting embedded ARM boards today. We primarily use U-Boot for its ability to
fetch a system image over the network. There is a good chance that your board comes
equipped with U-Boot already. If not, investigate the option to chain-load U-Boot from
your board’s boot loader.

Once you got U-Boot to work, continue with reproducing the U-Boot binary from
source. This may become handy for investigating device-driver issues later on (e. g.,
taking U-Boot’s IOMUX or power or clock configuration as reference, peeking device
states at boot time). Consider extending Genode’s tool/create_uboot 2 utility, thereby
documenting the steps for reproducing the U-Boot version for your particular board
from source.

1https://github.com/genodelabs/genode/tree/master/tool/run/image/uboot
2https://github.com/genodelabs/genode/blob/master/tool/create_uboot

12

https://genode.org
https://github.com/genodelabs/genode/tree/master/tool/run/image/uboot
https://github.com/genodelabs/genode/blob/master/tool/create_uboot

2.1 Preparatory steps

Create a working test-control loop The goal of this step is to reach a state where you
can type only one command like following from the Genode build directory to trigger
a complete build-test cycle.

make run/log KERNEL=hw BOARD=<your-board>

The build-test cycle entails:

1. Compiling the source code of Genode components,

2. Applying a system configuration,

3. Assembling a system image,

4. Making the system image available over TFTP,

5. Power-cycling the board,

6. Letting the board fetch the system image and start it, and

7. Getting the serial output of the board right in your terminal.

To reach this level of convenience, the following topics must be addressed:

Network boot

• Set up TFTP server on you development machine

• Test your TFTP server locally from your development machine

• Configure DHCP server in your network to direct the boot loader of your
development board to the TFTP server on your development machine

Let the run tool obtain the serial output from your board

Take a look at the various options of run tool at _tool/run/log 1.

Network-controlled reset / power switch

As the icing on the cake, consider powering your board via a network-controlled
power socket as described in 2.

More options can be found at at tool/run/power_off 3 and tool/run/power_on 4.

For further inspiration, you may also enjoy the article 5.

1https://github.com/genodelabs/genode/blob/master/tool/run/log
2https://genodians.org/chelmuth/2019-03-13-powerplug
3https://github.com/genodelabs/genode/blob/master/tool/run/power_off
4https://github.com/genodelabs/genode/blob/master/tool/run/power_on
5https://genodians.org/tomga/2019-08-13-rpi-automation

13

https://github.com/genodelabs/genode/blob/master/tool/run/log
https://genodians.org/chelmuth/2019-03-13-powerplug
https://github.com/genodelabs/genode/blob/master/tool/run/power_off
https://github.com/genodelabs/genode/blob/master/tool/run/power_on
https://genodians.org/tomga/2019-08-13-rpi-automation

2.2 Getting acquainted with the target platform

2.2 Getting acquainted with the target platform

The undertaking of bringing Genode - and Sculpt OS in particular - to a new ARM
SoC comes with a great deal of uncertainties, namely the inner functioning of overly
complex hardware, picking appropriate tools and methodologies, taking informed de-
cisions about porting versus developing drivers, and relating all this to Genode.

Combined, these uncertainties pose a huge barrier. At Genode Labs, we have con-
quered this barrier a few times in the past, e. g., for supporting the NXP i.MX8 SoC.
However, the porting of Genode to new hardware should not be left as an activity ex-
clusive to Genode Labs. In order to assist developers outside of Genode’s inner circle
with joining the fun, we’d like to share what we know. This sharing should have the
form of profound documentation that serves as a guide and removes points of friction
as much as possible.

To deliver substance, I figured that I should not merely talk the talk by speaking from
past experience, but also walk the walk again while writing down my practical steps as
I go. So I went forward looking around for tasty hardware, when https://www.pine64.
org/ caught my eyes.

Why Pine64? I got excited about Pine64 for several reasons.
First, devices in the form factors of the Pinephone and the A64 development boards

are readily available at affordable prices. The Pine64 website carries a very positive
message, highlighting community, openness, sustainability, transparency, no marketing
nonsense.

Second, the products are designed for hackability. This is evidenced by the vibrant
developer community, mainline Linux kernel support, and the availability of literally
more than a dozen Linux distributions. One can boot the Pinephone directly from SD-
card. How cool is that!

Third, the used Allwinner SoC - introduced as early as 2015 - is rather aged. In con-
trast to bleeding-edge hardware, I would not need to explore unconquered territory.
Others have hopefully discovered most pitfalls before me. The SoC seems to strike a
nice balance of modern features (64 bit, multi core, virtualization) with modest com-
plexity. The performance of the SoC is notably at the lower end of the smartphone
product category. From the perspective of an operating-systems developer, I don’t see
this as a con but more as a welcome challenge. Will Genode be able to shine on such a
constrained device? Let’s find out!

The only downside of the SoC worth mentioning is the lack of an IO-MMU as protec-
tion mechanism against rampant I/O devices or drivers. So the sandboxing of device
drivers can never be water-tight.

14

https://www.pine64.org/
https://www.pine64.org/

2.2 Getting acquainted with the target platform

2.2.1 Getting a first impression

We ordered a Pine64-LTS board 1, a Pinephone 2, and a serial cable 3 for the Pinephone
directly from the online store. For some kind of safety reason, the phone had to be
ordered separately. In hindsight, we better had ordered a power supply for the Pine64-
LTS board as well. We skipped it as we already have kilograms of AC power supplies
of other boards at hand. However, it turned out that kilograms of power supplies with
5mm connectors are of little use when the board features a less mainstream 3.5mm
connector. Such details matter sometimes.

For getting our hands dirty with technical work, we will have to leave the Pinephone
alone for a while and turn our attention to the Pine-A64-LTS board. Pine64 wiki 4

provides the perfect staring point.

Booting an officially supported GNU/Linux image The wiki lists numerous ready-
to-use Linux distributions. I went for https://www.armbian.com. Just a few minutes
later, after downloading the disk image 5, writing the image to an SD card, connecting
an HDMI display and a USB keyboard, and booting the board with the SD card inserted,
I was greeted with Armbian login, allowing me to login as root user.

At this point, I’m most interested in getting a first overview of the hardware. The
following information are insightful:

root@pine64so:/# cat /proc/cpuinfo
...
root@pine64so:/# cat /proc/meminfo

Well, that is not too surprising. It’s more like a ritual.

root@pine64so:/# dmesg | less

The kernel boot log is quite chatty. The following lines caught my eyes.

1https://pine64.com/product-category/pinephone/
2https://pine64.com/product-category/pinephone/
3https://pine64.com/product/pinebook-pinephone-pinetab-serial-console/
4https://wiki.pine64.org/index.php/PINE_A64-LTS/SOPine_Main_Page
5https://dl.armbian.com/pine64so/Buster_current

15

https://www.armbian.com
https://pine64.com/product-category/pinephone/
https://pine64.com/product-category/pinephone/
https://pine64.com/product/pinebook-pinephone-pinetab-serial-console/
https://wiki.pine64.org/index.php/PINE_A64-LTS/SOPine_Main_Page
https://dl.armbian.com/pine64so/Buster_current

2.2 Getting acquainted with the target platform

[2.228675] sun4i-drm display-engine: bound 1100000.mixer...
[2.230477] sun4i-drm display-engine: bound 1200000.mixer...
[2.231001] sun4i-drm display-engine: No panel or bridge found...
[2.231018] sun4i-drm display-engine: bound 1c0c000.lcd-controller...
[2.231227] sun4i-drm display-engine: bound 1c0d000.lcd-controller...
[2.231293] sun8i-dw-hdmi 1ee0000.hdmi: Couldn’t get regulator
[2.231734] sun4i-drm display-engine: Couldn’t bind all pipelines...

...once we get to graphics, we have to grep the Linux kernel for “sun4i-drm” and
“sun8i-dw-hdmi”. Whatever sun4i and sun8i means. Does “dw” stands for Design-
ware? I shudder for a moment...

[2.250163] 1c28000.serial: ttyS0 at MMIO 0x1c28000 (irq = 31,...
[2.250239] printk: console [ttyS0] enabled
[2.250893] sun50i-a64-pinctrl 1c20800.pinctrl: supply vcc-pg...
[2.251327] 1c28400.serial: ttyS1 at MMIO 0x1c28400 (irq = 32,...
[2.251471] serial serial0: tty port ttyS1 registered

...the Linux kernel uses the serial controller at 0x1c28000 by default. That will be the
first device we need a driver for. Never heard of a “16550A” device though...

[2.277178] ehci-platform 1c1b000.usb: EHCI Host Controller
[2.277210] ehci-platform 1c1b000.usb: new USB bus registered,...
[2.277359] ehci-platform 1c1b000.usb: irq 22, io mem 0x01c1b000
[2.289613] ehci-platform 1c1b000.usb: USB 2.0 started, EHCI 1.00
...
[2.291208] ohci-platform 1c1b400.usb: Generic Platform OHCI controller
[2.291228] ohci-platform 1c1b400.usb: new USB bus registered,...
[2.291342] ohci-platform 1c1b400.usb: irq 23, io mem 0x01c1b400

...an OHCI USB controller, I get a little blast from the past...

[2.384988] sunxi-mmc 1c0f000.mmc: initialized,...
[2.410167] sunxi-mmc 1c10000.mmc: initialized,...
[2.422925] mmc0: Problem switching card into high-speed mode!
[2.423025] mmc0: new SDHC card at address 0001

...two multi-media card (MMC) devices, apparently driven by an Allwinner-specific
controller. “Problem switching card into high-speed mode!”. MMC and problem are
almost synonymous. Allwinner will not positively surprise us...

[3.412571] dwmac-sun8i 1c30000.ethernet: IRQ eth_wake_irq not found

16

2.2 Getting acquainted with the target platform

...the good news is that there is a dedicated Ethernet controller, not merely a USB-
network device. The bad news is that the controller is an IP core purchased from De-
signware. After the deep scars I got from USB on the Raspberry Pi, I was hoping not to
touch anything with “dw” in its name again...

[9.189128] Call trace:
[9.191219] ktime_get_update_offsets_now+0x5c/0x100
[9.193340] hrtimer_interrupt+0xa0/0x2f0
[9.195466] sun50i_a64_read_cntpct_el0+0x30/0x38
[9.197542] arch_counter_read+0x18/0x28
[9.199712] arch_timer_handler_phys+0x34/0x48
[9.201813] handle_percpu_devid_irq+0x84/0x148
[9.203971] ktime_get_update_offsets_now+0x5c/0x100
[9.206022] hrtimer_interrupt+0xa0/0x2f0
[9.208071] generic_handle_irq+0x30/0x48
[9.210150] __handle_domain_irq+0x64/0xc0
... many more lines ...

...a Linux kernel thread died during boot. The “sun50i” symbol hints at an Allwinner-
related driver issue. The kernel marches on nevertheless...

[9.703995] lima 1c40000.gpu: gp - mali400 version major 1 minor 1
...

...it’s really nice to have a GPU without the need for any proprietary blobs, thanks to
the reverse-engineering efforts by the Lima project.

The kernel log is not the only place revealing information about the hardware.

root@pine64so:/# cat /proc/iomem

01000000-0100ffff : 1000000.clock clock@0
01100000-011fffff : 1100000.mixer mixer@100000
01200000-012fffff : 1200000.mixer mixer@200000
...
...
40000000-bdffffff : System RAM

Here, we get a complete view of the physical-memory layout, including the loca-
tions of all memory-mapped devices as well as the actual RAM. The (almost) 2 GiB of
physical memory does not start at 0 but rather at 0x40000000.

root@pine64so:/# cat /proc/interrupts

17

2.2 Getting acquainted with the target platform

Here, we see how the relationship between devices, interrupt numbers, and CPUs
(interrupt routing) as configured by the Linux kernel.

Another point of interest is the device tree that can be found at /proc/device-tree, which
is actually a symbolic link to /sys/firmware/devicetree/base.

At this point, it is too early to digest all this information. Let’s save it for later. The
easiest way is storing data on a USB stick.

1. When plugging in a USB stick to the second USB port, the kernel’s dmesg output
tells us that it is detected as /dev/sdb as well as the partitions, e. g., /dev/sdb1 for the
first partition.

2. Knowing the device name of the partition, we can mount its file system at /mnt
via mount /dev/sdb1 /mnt.

3. Now we can copy any files interest to /mnt/.

As an additional function test, one can quickly give the network interface a try. Once
when plugging in a network cable to our local network, the LED on the network PHY
starts blinking happily, and ifconfig reveals that the board got an IP address from our
local DHCP server. A quick wget https://genode.org works just as expected.

Serial line Knowing that the board is fully functional when running a Linux-based
OS, we have to work towards using the board as an embedded development target.
Textual output over serial is the most important prerequisite for that. The times when
development boards featured 9-pin D-SUB connectors is long past. Nowadays, we need
to look out for the right pins on one of the board’s expansion sockets. The board has
several of them. So now is a good time to get acquainted with the board’s schematics.

Pine-A64-LTS board schematics

https://files.pine64.org/doc/SOPINE-A64/PINE%20A64-TLS-20180130.pdf

The schematics hint at several serial devices (UART). E.g., UART1 at the SDIO WIFI +
BT pin header. The go-to solution is not obvious. Fortunately, a little web search later,
we land on a nice wiki page 1 describing the UART on Pine64. In particular, we learn
“Better always use UART0 on the EXP connector nearby, accessible on pins 7 (TXD), 8
(RXD), 9 (GND).”

Everyone should have a few TTL-232R-RPi cables at hand. If you don’t, hurry up
and order some. Pay attention to signal level. In our case, the board needs a 3.3V cable.
All we need is cross-connecting TX to RX, RX to TX, and ground to ground.

On Linux-based development machines, we usually use picocom as serial terminal
program. When connecting the USB cable, the Linux kernel’s dmesg output tells us
about the new device /dev/ttyUSB0, which we can readily access with picocom.

1https://linux-sunxi.org/Pine64

18

https://files.pine64.org/doc/SOPINE-A64/PINE%20A64-TLS-20180130.pdf
https://linux-sunxi.org/Pine64

2.2 Getting acquainted with the target platform

picocom --baud 115200 /dev/ttyUSB0

When pressing enter, we are greeted with the login of Armbian.
For the next steps, display and keyboard are no longer needed. All we need is the

serial line.

JTAG I’m hopeful that serial output will suffice for most debugging work. However,
in desperate situations like when facing cache-coherency issues, a JTAG debugger like
Lauterbach or Flyswatter can really save the day (or the week). So when encountering
a new board, we always look out for JTAG debugging pins. If present, we get the cozy
feeling of having this option available as a last resort.

In the case of the Pine64, we must live without this cozy feeling. While searching the
forum https://forum.pine64.org, I learned that the SoC is indeed equipped with JTAG
pins but the wiring of the Pine board does not make them accessible. Apparently, there
is too little interest in JTAG by the community at large, which is perfectly understand-
able. Most users don’t mess around at the low level where JTAG becomes the tool of
choice.

2.2.2 The U-Boot boot loader

U-Boot 1 is widely regarded as the canonical boot loader for ARM platforms, and we
Genode developers agree. The primary reason for our high opinion is U-Boot’s ability
to fetch boot images over the network from a TFTP server, which is fundamental to our
work flows.

The secondary reason is that U-Boot brings the hardware into a state that is conve-
nient for the booted operating system. For example, since U-Boot prints messages over
serial, it needs to initialize the serial controller correctly, fiddly stuff like setting up the
baud rate or powering the USB FUE. With those preparations done by the boot loader,
Genode’s drivers can conveniently skip those steps and still work nicely.

The third great benefit of U-Boot to us is the arsenal of drivers supported by the
project. Granted, we don’t actually use most of those drivers in practice. But others are
using them. So the drivers work reliably, are well maintained, and are usually much
less complex compared to drivers found in the Linux kernel. This makes the drivers a
very useful reference while developing drivers for Genode.

Since Armbian uses U-Boot, we can in principle keep using it. During the boot, one
can press <space> at the serial terminal to intercept the automated boot. This brings us
to the interactive U-Boot prompt.

1https://www.denx.de/wiki/U-Boot

19

https://forum.pine64.org
https://www.denx.de/wiki/U-Boot

2.2 Getting acquainted with the target platform

Building U-Boot from source Building the boot loader from source is not just an
affair of honor, it also fosters our understanding and our full control over the boot
process. The ability to control the boot loader is empowering and can serve as an ex-
perimentation ground. The steps for building U-Boot manually for Allwinner-based
devices are described in the excellent documentation 1.

For reference, here are the steps I took.

1. Cloning the git repository and checking a recent release branch:

$ git clone git://git.denx.de/u-boot.git
$ cd u-boot
u-boot$ git checkout -b v2020.10 v2020.10

2. Looking out for a suitable default configuration for the Pine64-LTS board, guess-
ing it would have something like “pine” in the name:

u-boot$ find configs/ | grep -i pine
configs/pinebook-pro-rk3399_defconfig
configs/sopine_baseboard_defconfig
configs/pine64_plus_defconfig
configs/pine64-lts_defconfig
configs/pinebook_defconfig
configs/pine_h64_defconfig

Well, pine64-lts_defconfig sounds like I’m lucky for the Pine64 board. But the Pine-
phone is notably absent. A look at https://linux-sunxi.org/PinePhone clarifies
the situation: “As we currently do not have any specific U-Boot config for this
device, Use the pine64-lts_defconfig build target temporarily as a hack.” That’s
fine by me.

3. Building the ARM Trusted Firmware

The ARM Trusted Firmware is the effort to unify low-level firmware interfaces
- think of the bring-up secondary CPU cores - across SoC vendors. A dedicated
article 2 by Stefan Kalkowski goes into more detail.

The building steps described at linux-sunxi.org are easy to follow. For us, the
build output is quite instructive for guiding our attention.

1https://linux-sunxi.org/Mainline_U-Boot
2https://genodians.org/skalk/2020-02-18-armv8-smp

20

https://linux-sunxi.org/PinePhone
https://linux-sunxi.org/Mainline_U-Boot
https://genodians.org/skalk/2020-02-18-armv8-smp

2.2 Getting acquainted with the target platform

$ make CROSS_COMPILE=aarch64-linux-gnu- PLAT=sun50i_a64 DEBUG=1 bl31
...
CC drivers/allwinner/axp/axp803.c
CC drivers/allwinner/axp/common.c
CC drivers/allwinner/sunxi_msgbox.c
CC drivers/allwinner/sunxi_rsb.c
...
CC plat/allwinner/sun50i_a64/sunxi_power.c
CC plat/common/plat_gicv2.c
...
Built /home/no/pine64/arm-trusted-firmware/build/sun50i_a64/debug/bl31.bin successfully

There are many more lines. They point us to interesting details. For exam-
ple, drivers/allwinner/axp/axp803.c contains the default settings of the AXP power-
management chip, plat/allwinner/sun50i_a64/sunxi_power.c tells us how the AXP
chip is accessed via memory-mapped I/O.

4. Installing the boot loader on the SD-card

The steps are described in detail at https://linux-sunxi.org/Bootable_SD_card.
For me, it is great to see the option of using a GPT partitioning scheme, which we
already use for Sculpt OS on PC hardware. This will hopefully become handy at
a later stage.

A few useful U-Boot commands When booting U-Boot from our freshly prepared
SD card, we can see U-Boot initializing and probing a bunch of devices. In our current
situation, booting over the network is the most important functionality. So we turn
our attention to the bootp command.

=> help bootp
bootp - boot image via network using BOOTP/TFTP protocol

Usage:
bootp [loadAddress] [[hostIPaddr:]bootfilename]

Let’s give it a quick try. My development machine has the IP address 10.0.0.32 within
the local network and happens to have a TFTP server running. Just for the test, I put a
little file called something into the TFTP directory and issue the following command to
U-Boot:

21

https://linux-sunxi.org/Bootable_SD_card

2.2 Getting acquainted with the target platform

=> bootp 10.0.0.32:/var/lib/tftpboot/something

TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/something’.
Load address: 0x42000000

Of course, I don’t want to manually type this command on every boot. It is much
better to tell U-Boot to execute the command automatically for us. This is possible by
customizing U-Boot’s bootcmd environment variable.

=> help editenv
editenv - edit environment variable

Usage:
editenv name

- edit environment variable ’name’

=> editenv bootcmd
edit: bootp 10.0.0.32:/var/lib/tftpboot/something

With the bootcmd customized to our liking, lets save the new setting. U-Boot pro-
vides the command saveenv for that, which stores the settings at a predefined location
on the MMC / SD card.

=> saveenv
Saving Environment to FAT... Card did not respond to voltage select!
Failed (1)

Well, this did not work as anticipated. The reason is that there are two MMC devices
present. The SD-card is connected to the first MMC controller whereas U-Boot is appar-
ently configured to store its environment via the second MMC controller. Fortunately,
the latter setting can be configured in U-Boot’s build configuration.

Inside the u-boot/ .config, we find a variable CONFIG_ENV_FAT_DEVICE_AND_PART.
In the interactive menuconfig, the corresponding setting is located at the Environment
sub menu:

(1:auto) Device and partition for where to store the environemt in FAT

Changing the setting to 0:auto should do the trick. Of course, we have to go again
through the steps of building U-Boot and writing it to the SD-card. But that is a small
price to pay for the convenience that awaits us.

Next time in U-Boot, editing the bootcmd again to our liking and invoking the
saveenv command makes us smile:

22

2.2 Getting acquainted with the target platform

=> saveenv
Saving Environment to FAT... OK

From now on, we can save a number of key strokes on each boot. One final tweak
would increase our comfort even more. By default, U-Boot initializes the USB controller
at boot time. This takes a few seconds, delaying our boot time. Since we don’t plan to
boot from any USB device during our development workflow, it is better to skip the
USB initialization. This can be done by changing the preboot environment variable
from “usb start” to nothing, and of course make the change persistent via the saveenv
command.

23

2.3 Bare-metal serial output

2.3 Bare-metal serial output

In the previous section, we started getting acquainted with the Pine64 hardware, estab-
lished a serial connection using Linux, and explored the use of the U-Boot boot loader.
Now we can move towards running Genode’s kernel on the device. Before touching
Genode, however, we need to take two precautions.

1. We need to understand the hand-over of execution from the boot loader to the
loaded kernel code.

2. In order to know that the right things are happening within our custom code, we
need a way to get information out.

To address both questions, we are going to build a custom code blob that can be copied
to a predefined physical-memory address and, when executed, prints characters over
the serial line. For the latter, we need a primitive way to print debug messages over
a serial connection. This section goes through the steps of executing custom code on
bare-metal hardware with no kernel underneath, and attaining serial output by poking
UART device registers directly.

Information gathering During our initial exploration in Section 2.2, we stumbled
over a serial device of type “16550A” at address 0x1c28000 that is apparently used by
the Linux kernel by default. We have already seen it in action when we interacted with
U-Boot and the Armbian system over the serial connection. Just for reference, here is
the corresponding dmesg output again:

[2.250163] 1c28000.serial: ttyS0 at MMIO 0x1c28000
(irq = 31, base_baud = 1500000) is a 16550A

There are several ways to find out more about this particular device. For example,
one might be inclined to consult chip-vendor documentation. This, however, can be a
muddy approach. More often than not, ARM-based SoCs are poorly covered by public
documentation, or the available documentation contains uncertainties or even errors.
Whenever feasible, I like to follow the path of ground truth, looking at known-to-work
code as reference. Let’s examine the build configuration of our build of U-Boot, which
can be readily found in the u-boot/.config file. When searching it for the string “Serial”,
we quickly end up at the following line:

CONFIG_SYS_NS16550=y

The driver has to have something like “NS16550” in its name. So let’s grep the source
tree for files named after this string:

24

2.3 Bare-metal serial output

$ cd u-boot
$ find | grep -i NS16550
./drivers/serial/ns16550.c
./drivers/serial/ns16550.su
./drivers/serial/.ns16550.o.cmd
./drivers/serial/ns16550.o
./drivers/serial/serial_ns16550.c
./include/ns16550.h
./include/config/sys/ns16550.h
./spl/drivers/serial/ns16550.su
./spl/drivers/serial/serial_ns16550.o
./spl/drivers/serial/.ns16550.o.cmd
./spl/drivers/serial/ns16550.o
./spl/drivers/serial/serial_ns16550.su
./spl/drivers/serial/.serial_ns16550.o.cmd

That looks promising. At this point, we are especially interested in drawing the
connection to the UART device address 0x1c28000. Remember how we specified
PLAT=sun50i_a64 to the build system of U-Boot? The “sun50i_a64” has to refer to our
SoC. So let’s grep the source tree for any connection between “sun” and “NS16550”.

grep -r NS16550 | grep -i sun
...
include/configs/sunxi-common.h:# define CONFIG_SYS_NS16550_COM1 SUNXI_UART0_BASE
include/configs/sunxi-common.h:# define CONFIG_SYS_NS16550_COM2 SUNXI_UART1_BASE
...

Next stop, SUNXI_UART0_BASE:

grep -r SUNXI_UART0_BASE
...
arch/arm/include/asm/arch-sunxi/cpu_sun9i.h:#define SUNXI_UART0_BASE (REGS_APB1_BASE + 0x0000)
arch/arm/include/asm/arch-sunxi/cpu_sun4i.h:#define SUNXI_UART0_BASE 0x01c28000
...

Now seeing the address 0x01c28000, we know for certain that we are looking at the
right device and the corresponding driver code.

The next step consists of cross-checking several pieces of information. Searching the
web for “NS16550 pdf” brings up the data sheet for the device (http://caro.su/msx/
ocm_de1/16550.pdf). In contrast to SoC chip vendor documentation, data sheets of
individual IP cores like this are - if publicly available - usually of good quality. So we
are lucky. Glimpsing over the data sheet, we learn that the register at offset 0 is the

25

http://caro.su/msx/ocm_de1/16550.pdf
http://caro.su/msx/ocm_de1/16550.pdf

2.3 Bare-metal serial output

so-called transmitter holding register (THR). We must write to this register to print a
character. It is interesting to see that all device registers are 8 bits wide. This raises the
question how those registers are mapped to system-bus addresses of the ARM SoC. The
answer can be found at the Allwinner A64 manual 1 as linked by the Pine64 wiki. Here,
we learn that the individual registers are mapped to 32-bit aligned memory-mapped
I/O registers. Thus, the register offsets found in the NS16550 data sheet have to be
multiplied with 4. The THR register is of course mapped to offset 0. For cross-checking
this information, the U-Boot driver code at drivers/serial/ns16550.c becomes handy.

What has the NS16550 data sheet has to say about the THR register?

Before writing this register the user must ensure that the UART is
ready to accept data for transmission, for example checking that THR
Empty flag is set in the LSR

LSR stands for line status register. According to the data sheet, it is the 5th register.
Hence, it should be accessible at the ARM system bus at offset 5*4 = 0x14. We also learn
that the mentioned “Empty” flag hides behind bit 5 of the LSR.

20 bytes yelling “U” As a preliminary test, let’s try to unconditionally write the char-
acter U (ASCII value 0x55) to the THR register in an infinite loop. The corresponding C
program (saving the file as main.c) looks as follows:

int _start()
{
for (;;)

*(unsigned long *)0x1c28000 = ’U’;
}

Since we will ultimately have to use Genode’s tool chain 2 very soon, now would
be a good time to install it. The tool chain comes with AARCH64 support. All the
utilities can be found at /usr/local/genode/tool/current/bin/. One may consider adding this
directory to the shell’s PATH variable to avoid the need for typing out this rather long
path. But that is just a matter of convenience.

The following invocation of GCC compiles our little C program into an ELF binary:

$ genode-aarch64-gcc -nostdlib main.c -o serial_test

1https://files.pine64.org/doc/datasheet/pine64/Allwinner_A64_User_Manual_V1.0.pdf
2https://genode.org/download/tool-chain

26

https://files.pine64.org/doc/datasheet/pine64/Allwinner_A64_User_Manual_V1.0.pdf
https://genode.org/download/tool-chain

2.3 Bare-metal serial output

The -nostdlib flag tells the compiler that we don’t want to link any C runtime or de-
fault startup code. Let’s inspect the result by disassembling the binary using objdump.

$ genode-aarch64-objdump -ld serial_test

serial_test: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400000 <_start>:
_start():
400000: d2900000 mov x0, #0x8000 // #32768
400004: f2a03840 movk x0, #0x1c2, lsl #16
400008: d2800aa1 mov x1, #0x55 // #85
40000c: f9000001 str x1, [x0]
400010: 17fffffc b 400000 <_start>

Even though the instructions look quite alien to me (not being too familiar with the
AARCH64 ISA at this point), this looks very reasonable. It’s good that the generated
code does not rely on a stack pointer because we cannot assume to have a valid stack.
However, the link address 0x400000 is concerning because the RAM base address of
the A64 SoC is not lower than 0x40000000. Remember, when we looked at Linux’
/proc/iomem, we spotted the following line:

40000000-bdffffff : System RAM

So we will have to tweak the linker arguments a bit. From our experiments with U-
Boot, we learned that U-Boot’s default load address 0x42000000 lies within this range.
We can use the linker argument -Ttext to explicitly specify our desired link address
for the text (code) segment:

genode-aarch64-gcc -Wl,-Ttext=0x42000000 -nostdlib main.c -o serial_test

The -Wl, prefix is merely needed to tell the GCC frontend to pass the following
argument to the linker. With this tweak, the disassembled binary looks even better:

27

2.3 Bare-metal serial output

Disassembly of section .text:

0000000042000000 <_start>:
_start():

42000000: d2900000 mov x0, #0x8000 // #32768
42000004: f2a03840 movk x0, #0x1c2, lsl #16
42000008: d2800aa1 mov x1, #0x55 // #85
4200000c: f9000001 str x1, [x0]
42000010: 17fffffc b 42000000 <_start>

The serial_test is a complete ELF binary with all kinds of meta data. For running
the instructions on the target, we either need an ELF loader (U-Boot can of course do
that for us) or we climb the hill barefoot. The latter gives us more control. So let’s
convert the ELF binary into a raw binary using objcopy.

genode-aarch64-objcopy -Obinary serial_test serial_test.img

We named the raw binary serial_test.img. Checking its size, it is quite thrilling to see
that it is just 20 bytes of pure usefulness! No overhead.

The next step would be fetching the image via U-Boot’s TFTP support. The TFTP
server running my development machine serves the directory /var/lib/tftpboot/. So we
have to copy our serial_test.img to this directory before turning to U-Boot’s console:

=> bootp 10.0.0.32:/var/lib/tftpboot/serial_test.img
BOOTP broadcast 1
BOOTP broadcast 2
BOOTP broadcast 3
DHCP client bound to address 10.0.0.178 (1100 ms)
Using ethernet@1c30000 device
TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/serial_test.img’.
Load address: 0x42000000
Loading: #

4.9 KiB/s
done
Bytes transferred = 20 (14 hex)

It seems our program in its entirety reached its designated place. Now it’s time to
take a jump!

=> go 0x42000000
Starting application at 0x42000000 ...
UUU...

28

2.3 Bare-metal serial output

The serial console gets flooded with U characters. What a joyful moment!
Let’s reiterate what we gained by this experiment:

• We know how to compile a custom C program into binary code that works on the
target.

• We successfully loaded our binary onto the target and passed control from the
boot loader to our code.

• We got a positive lifesign back from our code.

Evolving from primordial vocals to words Until now, we just violently poked the
THR register without listening for the status of the UART device. To make the program
utter words instead of merely vocals, this ignorance has to stop.

While modifying our program, we have to be careful to not using the stack. While
doing these iterative experiments, a little Makefile becomes handy, which prints the
disassembled program after each compilation:

CROSS_DEV_PREFIX := /usr/local/genode/tool/current/bin/genode-aarch64-

serial_test: main.c
$(CROSS_DEV_PREFIX)gcc -Wl,-Ttext=0x42000000 -nostdlib $< -o $@
$(CROSS_DEV_PREFIX)objdump -ld $@

serial_test.img: serial_test
$(CROSS_DEV_PREFIX)objcopy -Obinary $< $@

test: serial_test.img
cp $< /var/lib/tftpboot/

This little workflow tool not only makes life so much more convenient but it also
documents the use of the various commands for the future me. Since I regard it as a
mere personal tool of mine, I even don’t hesitate place commands like the copying of
the image to my TFTP directory in there. Now, by issuing make test, the command
takes all the steps of compiling, showing the assembly code, creating the raw binary,
and copying to the TFTP directory all at once.

Turning back to our actual program, the next baby step would be the output of a
string of characters instead of just one character, like so:

29

2.3 Bare-metal serial output

static char const *text = "Aye aye.\n\r";
static char const *s;

for (;;)
for (s = text; *s; s++)

*(unsigned int volatile *)0x1c28000 = *s;

You may wonder why the variables text and s are marked as static? If I made them
local variables, which would normally be the better practice, the compiler would gen-
erate a stack frame. For example, by merely changing the for loop to the innocent
looking line

for (char const *s = text; *s; s++)

the corresponding assembly program will generate instructions changing and de-
referencing the stack-pointer register:

42000000: d10043ff sub sp, sp, #0x10
42000004: 90000080 adrp x0, 42010000 <_start+0x10000>
42000008: 91018000 add x0, x0, #0x60
4200000c: f9400000 ldr x0, [x0]
42000010: f90007e0 str x0, [sp, #8]
...

Since we don’t have a stack, this is a big no-no! The static keyword tells the com-
piler to statically allocate the variable at the data (or bss) segment of the binary. Speak-
ing of binary segments, for a bit of a shock, have a look at the binary size now:

$ ls -la serial_test.img
-rwxrwxr-x 1 no no 65640 Dez 17 15:30 serial_test.img

Isn’t that embarrassing? With our change, we inflated the binary size from 20 bytes
to more than 64 KiB. This effect is caused by our use of variables, which were com-
pletely absent in the initial version. The use of at least one variable prompts the compil-
er/linker to generate a data segment in addition to the text (code) segment. By default,
the linker places each segment at an aligned address using a default alignment. On
AARCH64, this default alignment is 64 KiB so that the segment always starts at the be-
ginning of a MMU page when using virtual memory. Because of this default behavior,
our few instructions are followed by almost 64 KiB of zeros before the variables start
at the next 64 KiB boundary. As of now, we don’t use any MMU. So we could in prin-
ciple weaken the default alignment. Just for reference, the GCC argument for defining

30

2.3 Bare-metal serial output

a segment alignment of 16 bytes would be -Wl,-z -Wl,max-page-size=0x10. Voila!
The image shrunk from 64 KiB to less that 200 bytes. Well, I’ll stop the bean counting
for now and run this version of the program:

Starting application at 0x42000000 ...
Aye aye.
Aye aye.
Aye aye.
Aye aye.
Aye aye.
Aye aye.
Ayeaaaaaaaaaaaaaaaaaaaa...

Figure 1

Even though we can see strings of characters, at one point, the output regresses to
primordial vocals again. This had to be anticipated since we don’t yet check the TX
status bit before writing a new character to the THR register. Interestingly, it worked
for a while, presumably as long as the capacity of the UART’s TX FIFO buffer could
swallow the characters.

By the way, while tinkering with devices at such a bare-bones level with almost no
infrastructure, an artificial delay can be accomplished as follows:

for (i = 0; i < 1000000; i++)
asm volatile("nop");

31

2.3 Bare-metal serial output

By adding these lines to the body of the outer for loop, we can indeed observe stable
output. But that is of course just a hack. Let’s us better change the code to actually
evaluate the status bit.

int _start()
{
enum {
UART_BASE = 0x1c28000,

THR = UART_BASE,
LSR = UART_BASE + 0x14,

LSR_THRE = (1 << 5)
};

/* static is needed to prevent the compiler from creating a stack frame */
static char const *text = "Aye aye.";

for (;;) {

static char const *s;

for (s = text; *s; s++) {

/* poll ’TX Holding Register Empty’ bit */
while (((*(unsigned int volatile *)LSR) & LSR_THRE) == 0);

*(unsigned int volatile *)THR = *s;
}

}
}

Note the amount of lipstick I applied to the code.

• Adding a comment here and there.

• Grouping things with vertical whitespace.

• Using enum values to give magic values tangible names.

I agree that this may be a little excessive for such a temporary test program. But keep
in mind that I wrote it not for my present me, but for you, and my future me. Also note
that I removed the line break from the text, which has no reason other than making
the following picture more pretty.

32

2.3 Bare-metal serial output

Figure 2: Infinite obedience

Thanks to listening to the UART’s TX status bit, the output has become reliable.
So now, we have a minimal and known-to-work blueprint for our upcoming kernel’s
UART driver. With this primitive way to get information out of the board, we can turn
our attention to the kernel-porting work, which is the topic of the next section.

33

2.4 Kernel skeleton

2.4 Kernel skeleton

Of the several kernels supported by the Genode OS framework, the so-called base-hw
kernel is our go-to microkernel for ARM-based devices. Section 7.7. “Execution on
bare hardware” of the Genode Foundations book goes into detail about its underlying
software design. This section describes the process of porting this kernel to a new
board, specifically the Pine-A64-LTS single-board computer.

Equipped with the bare-metal serial-output facility developed in the previous sec-
tion, we are eager to turn our attention to the kernel. Before attempting the porting of
the kernel to the new board, however, it is recommended to run it first on one of the al-
ready supported boards to have a working reference. In the case of the Pine-A64 board,
which is based on an Allwinner multi-core 64-bit ARM SoC, the closest approximation
would be the NXP i.MX8Q EVK board, which ticks the boxes ARM, multi-core, and
64-bit. At the very least, one should give the kernel a try using Qemu’s virtual pbxa9
board, which is a 32-bit platform. Even though this board has not much in common
with ours, it is still useful for seeing how the various bits and pieces described below
are supposed to work together.

2.4.1 A tour through the code base

The starting point of our line of work will be the existing board support for the i.MX8Q
EVK. To get an idea of the amount of work ahead of us, let’s examine the base-hw source
tree within Genode for occurrences of the board’s name. The search pattern “imx” is a
good start.

$ find repos/base-hw -type f | grep imx8
repos/base-hw/lib/mk/spec/arm_v8/core-hw-imx8q_evk.mk
repos/base-hw/lib/mk/spec/arm_v8/bootstrap-hw-imx8q_evk.mk
repos/base-hw/recipes/src/base-hw-imx8q_evk/hash
repos/base-hw/recipes/src/base-hw-imx8q_evk/content.mk
repos/base-hw/recipes/src/base-hw-imx8q_evk/used_apis
repos/base-hw/src/bootstrap/board/imx8q_evk/platform.cc
repos/base-hw/src/bootstrap/board/imx8q_evk/board.h
repos/base-hw/src/include/hw/spec/arm_64/imx8q_evk_board.h
repos/base-hw/src/core/board/imx8q_evk/board.h

We can ignore everything inside the recipes/ directory for now. This directory contains
package descriptions. We will come back to the packaging topic later. A grep -v hides
these files from our view.

34

2.4 Kernel skeleton

$ find repos/base-hw -type f | grep imx8 | grep -v recipes
repos/base-hw/lib/mk/spec/arm_v8/core-hw-imx8q_evk.mk
repos/base-hw/lib/mk/spec/arm_v8/bootstrap-hw-imx8q_evk.mk
repos/base-hw/src/bootstrap/board/imx8q_evk/platform.cc
repos/base-hw/src/bootstrap/board/imx8q_evk/board.h
repos/base-hw/src/include/hw/spec/arm_64/imx8q_evk_board.h
repos/base-hw/src/core/board/imx8q_evk/board.h

On the one hand, it is nice to see such a small number of files to be concerned about.
On the other hand, those files appear quite scattered throughout the source tree with
a deep hierarchy, which is a bit confusing. To lift the clouds, let’s have a look at the
source-tree structure.

base-hw/

lib/

mk/

spec/

arm_v8/

bootstrap-hw-imx8q_evk.mk

core-hw-imx8q_evk.mk

src/

include/

hw/

spec/

arm_64/

imx8q_evk_board.h

bootstrap/

board/

imx8q_evk/

platform.cc

board.h

core/

board/

imx8q_evk

board.h

The files appearing under lib/mk/ are build-description files for libraries. There are
two such files, having the file extension .mk. They are located in a sub directory called

35

2.4 Kernel skeleton

spec/arm_v8/, which means that the build system considers them only when building
for an instruction set architecture that matches ARMv8.

Distinction between bootstrap and core Given the set of files depicted above, we
can immediately spot two construction sites, namely “bootstrap” and “core”. The dis-
tinction between those two parts is illustrated in the following picture.

U-Boot

Bootstrap

Core / Kernel

Init
user mode

privileged mode

ELF load

ELF load

ELF load

MMU disabled

physical memory

MMU enabled

virtual memory

The bootstrap program is started by the boot loader while the CPU is running in
physical mode. The MMU is disabled at this point. Only one CPU - usually referred
to as the boot CPU - is active. Bootstrap is tasked with all the dirty and quirky work
needed in preparation to bring up the so-called core component. This involves board-
specific trickery like tweaking clocks and voltages, setting up the page tables for ex-
ecuting the core program in virtual memory, enabling the MMU, the initialization of
additional CPU cores, and the ELF-loading of the core ELF executable. Once these
steps are taken, bootstrap passes the control to the core component and ceases to exist.

The core component contains the microkernel executed in privileged mode. When
using Genode on a traditional microkernel like NOVA or seL4, core is the first user-
level program started by the kernel. It is usually called roottask. In contrast, when
using base-hw as we are going to do now, core and the kernel are one single program.
Core is the microkernel at the root of Genode’s component tree. Hence, in the following,
the terms core and kernel are used synonymously.

Core is executed with the MMU enabled. It is globally mapped at the upper part of
the virtual address space. To operate as the kernel, it contains basic drivers for the inter-
rupt controller, kernel timer (for preemptive scheduling), cache maintenance, and cross-
CPU synchronization. For the interplay with the user level components running on top
of core, it features code paths for exiting the kernel into the user land and, vice versa, for
entering the kernel from the user land (syscalls, exceptions, interrupts). Functionality-
wise, it implements mechanisms for inter-component communication, asynchronous

36

2.4 Kernel skeleton

notifications, physical-memory allocation, the management of virtual address spaces,
and the world-switching between virtual machines (if used as a hypervisor). In short,
everything a microkernel needs to do and - more importantly - nothing a microkernel
shouldn’t do.

Review of the board-specific code Before starting the work on the new board sup-
port, let us briefly look into each of the files for the existing i.MX8q EVK board.

In list of files, we spot three header files, one board.h header under src/bootstrap/,
one board.h header under src/core/, and one imx8q_evk_board.h header under src/in-
clude/. The former two files are specific for bootstrap and core, whereas the latter
contains definitions useful for both programs. The board.h files are located in direc-
tories named after the board. With this structure, generic (board-agnostic) code can
#include <board.h>. The build system picks the right board.h file by adding the
board-specific directory to the include-search path.

Let us start with with definitions used across bootstrap and core.

repos/base-hw/src/include/hw/spec/arm_64/imx8q_evk_board.h

#include <drivers/uart/imx.h>
#include <hw/spec/arm/boot_info.h>

namespace Hw::Imx8q_evk_board {
using Serial = Genode::Imx_uart;

enum {
RAM_BASE = 0x40000000,
RAM_SIZE = 0xc0000000,

UART_BASE = 0x30860000,
UART_SIZE = 0x1000,
UART_CLOCK = 250000000,

};

namespace Cpu_mmio {
enum {

IRQ_CONTROLLER_DISTR_BASE = 0x38800000,
IRQ_CONTROLLER_DISTR_SIZE = 0x10000,
IRQ_CONTROLLER_VT_CPU_BASE = 0x31020000,
IRQ_CONTROLLER_VT_CPU_SIZE = 0x2000,
IRQ_CONTROLLER_REDIST_BASE = 0x38880000,
IRQ_CONTROLLER_REDIST_SIZE = 0xc0000,

};
};

}

37

2.4 Kernel skeleton

Both bootstrap and core need to know the memory-mapped device registers for the
UART device to print diagnostic messages. The UART driver (drivers/uart.imx.h) is in-
cluded. The Serial type refers to the concrete UART driver implementation as present
on the board. Thanks to this definition, generic code is able to rely on the UART func-
tionality via the type name Serial.

The start and size of physical memory must be known by both bootstrap and core.
So it is defined here.

Both bootstrap and core access the interrupt controller. Whereas bootstrap performs
the one-time initializations needed in order to start secondary CPU cores, core drives
the interrupt controller at runtime.

The bootstrap-specific files concern build descriptions and actual code. The build
description looks as follows.

repos/base-hw/lib/mk/spec/arm_v8/bootstrap-hw-imx8q_evk.mk

REP_INC_DIR += src/bootstrap/board/imx8q_evk

SRC_CC += bootstrap/board/imx8q_evk/platform.cc
SRC_CC += bootstrap/spec/arm/gicv3.cc
SRC_CC += bootstrap/spec/arm_64/cortex_a53_mmu.cc
SRC_CC += lib/base/arm_64/kernel/interface.cc
SRC_CC += spec/64bit/memory_map.cc
SRC_S += bootstrap/spec/arm_64/crt0.s

NR_OF_CPUS = 4

vpath spec/64bit/memory_map.cc $(call select_from_repositories,src/lib/hw)

include $(call select_from_repositories,lib/mk/bootstrap-hw.inc)

The i.MX8 SoC uses the GICv3 as interrupt-controller. Hence, the driver gicv3.cc is
included. In contrast, as we learned from the Linux boot log, the Allwinner A64 SoC
uses the GICv2 interrupt controller.

The MMU driver differs between the various ARM versions. The i.MX8 is based on
A53 CPU cores. The Allwinner A64 uses the same.

The assembly file arm_64/crt0.s contains the entry point into the program as jumped
to by the boot loader.

The NR_OF_CPUS definition is used for the static allocation of data structures that
must be present for each CPU. Hence, this value is globally defined.

The strange looking $(call select_from_repositories...) is a mechanism for
accessing files across different source repositories. You can find the mechanism de-
scribed in Section 5.3. “Build system” in the Genode Foundations book.

repos/base-hw/src/bootstrap/board/imx8q_evk/board.h

38

2.4 Kernel skeleton

#include <hw/spec/arm_64/imx8q_evk_board.h>
#include <hw/spec/arm_64/cpu.h>
#include <hw/spec/arm/gicv3.h>
#include <hw/spec/arm/lpae.h>

namespace Board {
using namespace Hw::Imx8q_evk_board;

struct Cpu : Hw::Arm_64_cpu
{

static void wake_up_all_cpus(void*);
};

using Hw::Pic;
}

The Board namespace aggregates the knowledge of the board details that matter to
the bootstrap code, namely the specific interrupt controller (gicv3.h) and the decla-
ration of the wake_up_all_cpus function. The Board namespace hosts the Pic (pro-
grammable interrupt controller) type, which allows the generic code of bootstrap to
interact with the interrupt controller without knowing the exact type of device.

repos/base-hw/src/bootstrap/board/imx8q_evk/platform.cc

Bootstrap::Platform::Board::Board()
:
early_ram_regions(Memory_region { ::Board::RAM_BASE, ::Board::RAM_SIZE }),
late_ram_regions(Memory_region { }),
core_mmio(Memory_region { ::Board::UART_BASE, ::Board::UART_SIZE },

Memory_region { ::Board::Cpu_mmio::IRQ_CONTROLLER_DISTR_BASE,
::Board::Cpu_mmio::IRQ_CONTROLLER_DISTR_SIZE },

Memory_region { ::Board::Cpu_mmio::IRQ_CONTROLLER_REDIST_BASE,
::Board::Cpu_mmio::IRQ_CONTROLLER_REDIST_SIZE })

{
::Board::Pic pic {};

... incomprehensible magic spells, some gibberish about GPIO, CCM, PLL ...
}

void Board::Cpu::wake_up_all_cpus(void * ip)
{

... more magic spells, digressing into assembly code ...
}

39

2.4 Kernel skeleton

The early_ram_regions, late_ram_regions, and core_mmio data structures are
initialized with the known ranges of physical memory and memory-mapped I/O reg-
isters. This information is designated to be passed further to core.

The call of ::Board::Pic pic ; performs basic interrupt-controller initialization
that is needed only once. It is followed by a sequence of board-specific tweaks to bring
the board into a defined state for the kernel to rely on. For instance, setting the I/O
MUX configuration, default voltages, and frequencies. The U-boot boot loader already
does a fine job for establishing a base line but it is rather conservative. The code for the
i.MX8 EVK boosts the voltages and frequencies for improving the performance.

The wake_up_all_cpus call invokes a hook to enable secondary CPU cores. The
used mechanism varies from board to board, specifically depending on the operation
of the ARM Trusted Firmware. We have to brace ourself for some investigation once
we look into multi-processor support. At the beginning, however, we will use only the
boot CPU. So we can ignore this function for now.

Finally, let’s turn our attention to the core-specific files.

repos/base-hw/lib/mk/spec/arm_v8/core-hw-imx8q_evk.mk

REP_INC_DIR += src/core/board/imx8q_evk
REP_INC_DIR += src/core/spec/arm/virtualization

add C++ sources
SRC_CC += kernel/vm_thread_on.cc
SRC_CC += spec/arm/gicv3.cc
SRC_CC += spec/arm_v8/virtualization/kernel/vm.cc
SRC_CC += spec/arm/virtualization/platform_services.cc
SRC_CC += spec/arm/virtualization/vm_session_component.cc
SRC_CC += vm_session_common.cc
SRC_CC += vm_session_component.cc

#add assembly sources
SRC_S += spec/arm_v8/virtualization/exception_vector.s

NR_OF_CPUS = 4

include less specific configuration
include $(call select_from_repositories,lib/mk/spec/arm_v8/core-hw.inc)

Core needs to know the type of the interrupt controller because it processes interrupts
at runtime. Here, the GICv3 driver is incorporated.

Similar to bootstrap, a few data structures within core are statically allocated for each
CPU, hence the NR_OF_CPUS must be specified here as well.

40

2.4 Kernel skeleton

We can ignore the files with vm_* and virtualization in their names for now. They
are important for hosting virtual machines. Since the virtualization support is a generic
feature of the ARM CPU, we don’t have to take board-specific precautions.

repos/base-hw/src/core/board/imx8q_evk/board.h

#include <hw/spec/arm_64/imx8q_evk_board.h>
#include <spec/arm/generic_timer.h>
#include <spec/arm/virtualization/gicv3.h>
#include <spec/arm_64/cpu/vm_state_virtualization.h>
#include <spec/arm/virtualization/board.h>

namespace Board {
using namespace Hw::Imx8q_evk_board;

enum {
TIMER_IRQ = 14 + 16,
VT_TIMER_IRQ = 11 + 16,
VT_MAINTAINANCE_IRQ = 9 + 16,
VCPU_MAX = 16

};
}

In addition to the aggregation of headers matching the board and SoC - like the
generic timer driver - we see the definitions of just the few interrupt numbers that are
important to core. The kernel is completely oblivious about all other peripheral devices.

The VCPU_MAX definition is solely used for the dimensioning of an array that keeps
the state of virtual CPUs for virtual machine. It is not important for now.

2.4.2 A new home for the board support

The easiest way to add support for a new board is the mirroring of the files introduced
above. We could march forward with adding new files and directories to a new branch
of the Genode repository. Alternatively, the Genode build system allows us to host
our custom board-specific files in a dedicated source repository that we can maintain
independently from the Genode main repository. The latter approach has the following
advantages.

First, it reinforces a clean separation between board-specific code from generic Gen-
ode code. In particular, the segregation of code constricts the working set of files relevant
for a given board, keeping only important code in view.

Operationally, it allows the decoupling of code ownership in terms of responsibility,
quality assurance, licensing hygiene, development process, and the choice of source
hosting.

41

2.4 Kernel skeleton

Finally, it alleviates the pressure to agree on one big joint code base, removing poten-
tial points of friction between developers.

In the following, we will put our code into a new repository named allwinner.

mkdir repos/allwinner

In principle, the directory can be anywhere but I find it practical to host it under the
repos directory of the Genode source tree. One may also opt to use a symlink, e. g.,
repos/allwinner pointing to ~/src/genode-allwinner.git.

We need to come up with with a concise name for our board support. Throughout
Genode, we follow certain naming conventions. In particular, we use underscore _ for
tightly coupled words, and minus - for loosely coupled terms. For example, in the file
name core-hw-imx8q_evk.mk, “imx8q_evk” belong closely together whereas the words
“core” and “hw” are used as some kind of category (read: the “core” component for the
“hw” kernel for the “imx8q_evk” board). With the background of these conventions,
the board name pine_a64lts seems sensible. Specific enough while still concise.

For the initial content from our new allwinner repository be blatantly mirror the files
of the base-hw repository.

42

2.4 Kernel skeleton

base-hw/

lib/

mk/

spec/

arm_v8/

bootstrap-hw-imx8q_evk.mk

core-hw-imx8q_evk.mk

src/

include/

hw/

spec/

arm_64/

imx8q_evk_board.h

bootstrap/

board/

imx8q_evk/

platform.cc

board.h

core/

board/

imx8q_evk

board.h

allwinner/

lib/

mk/

spec/

arm_v8/

bootstrap-hw-pine_a64lts.mk

core-hw-pine_a64lts.mk

src/

include/

hw/

spec/

arm_64/

pine_a64lts_board.h

bootstrap/

board/

pine_a64lts/

platform.cc

board.h

core/

board/

pine_a64lts

board.h

At the current stage, we are concerned about getting the build process right. To
concentrate at this one thing at a time, let us pretend that the Pine-A64-LTS board works
equal to the i.MX8 EVK. We don’t mind that the technicalities copied from the existing
board don’t match our new board until we run the code on the board. That said, as
the build-description files (those with the mk suffix) steer the build process, they must
be made consistent with our directory structure. So we have to revisit those files while
looking out for the pattern imx8q_evk.

A look into lib/mk/spec/arm_v8/bootstrap-hw-pine_a64lts.mk reveals the following line:

REP_INC_DIR += src/bootstrap/board/imx8q_evk

We have to replace it with

REP_INC_DIR += src/bootstrap/board/pine_a64lts

43

2.4 Kernel skeleton

Similarly, allwinner/lib/mk/spec/arm_v8/core-hw-pine_a64lts.mk contains the line:

REP_INC_DIR += src/core/board/imx8q_evk

This must be changed to

REP_INC_DIR += src/core/board/pine_a64lts

System-integration dry-run Let us see how the Genode build system swallows - or
chokes on - our new board support. First, we need a build directory for the ARMv8
architecture.

$./tool/create_builddir arm_v8a
Successfully created build directory at /.../genode/build/arm_v8a.
Please adjust /.../genode/build/arm_v8a/etc/build.conf according to your needs.

As suggested, we open build/etc/build.conf in our favorite text editor. Normally, I
enable parallel builds by uncommenting the corresponding line right at the beginning
of the file. But for now, let us keep it disabled until the skeleton builds successfully. The
steps of the build system are easier to follow if it operates deterministically.

We need to extend the REPOSITORIES variable with the path to our custom repository.
For the allwinner repository, that would be following line:

REPOSITORIES += $(GENODE_DIR)/repos/allwinner

Note that the order of REPOSITORIES defines the search order of the build system
for files. If the allwinner repository should be able to override content of the other
repositories, specifically base-hw, the above line should appear before the others.

With these changes in place, we can issue the build of bootstrap for new board.

$ cd build/arm_v8a
$ make bootstrap/hw KERNEL=hw BOARD=pine_a64lts
...
Library bootstrap-hw-pine_a64lts
...
MERGE bootstrap-hw-pine_a64lts.lib.a

Program bootstrap/hw/bootstrap_hw_pine_a64lts

The result can be found in the sub directory bootstrap/hw/. We find a single object file
named bootstrap-hw-pine_a64lts.o along with a stripped version of this file.

Likewise, core for the base-hw kernel and the new board can be built as follows.

44

2.4 Kernel skeleton

$ make core KERNEL=hw BOARD=pine_a64lts
...
MERGE core-hw-pine_a64lts.lib.a

Program core/hw/core_hw_pine_a64lts

Similar to the build of bootstrap, we can find the result at the corresponding subdi-
rectory, here core/hw/. We find a single archive file named core-hw-pine_a64lts.a along
with a stripped version of this file.

Next up, we are going to build a system image that contains both core and bootstrap.
Now would be a good time to enable parallel builds. Edit the etc/build.conf file by un-
commenting the following line (removing the hash # character).

#MAKE += -j4

One may also opt to write the BOARD and KERNEL arguments directly into the
build.conf file as illustrated by the commented-out examples. This spares the need to
specify the arguments each time when issuing a build command.

A system image contains bootstrap, core, and additional boot modules. The first
two puzzle pieces are already in place. But what about the boot modules? In contrast
to bootstrap and core, which are always the same for each system scenario, the boot
modules vary between system scenarios. Genode system scenarios are defined in the
form of run scripts. The run script at repos/base/run/log.run is a good starting point. As
defined by this particular run script, the system image for the “log” system scenario
is comprised of core, init, ld.lib.so, init, and test-log in addition to a configuration. A
system image (image.elf) for this scenario would look like this:

45

2.4 Kernel skeleton

image.elf

Executable
bootstrap/hw/bootstrap-hw-pine_a64lts.o

Executable
core/hw/core-hw-pine_a64lts.a

var/run/log.boot_modules.o

core.elf

config
init
ld.lib.so
test-log

Genode’s run tool automates the process of assembling such Matryoshkas from the
various pieces. Let’s give it a try:

$ make run/log KERNEL=hw BOARD=pine_a64lts
...
... long sequence of compile steps
...
genode build completed
using ’ld-hw.lib.so’ as ’ld.lib.so’
core link address is 0xffffffc000000000

Error: unknown image link address

File board/pine_a64lts/image_link_address not present in any repository.

Makefile:329: recipe for target ’run/log’ failed

This message should prompt us to have closer look at the run tool.

$ cd genode
$ grep -r "unknown image link address" tool
tool/run/boot_dir/hw: puts stderr "\nError: unknown image link address\n"

The file tool/run/boot_dir/hw is the part of the run tool that defines the integration of a
system image from its parts for the base-hw kernel. It is worth skimming over the file to

46

2.4 Kernel skeleton

get a rough understanding of how the system image is assembled from its ingredients.
The error message above comes from the function bootstrap_link_address called
during the system-image integration step.

The link address is evaluated by the boot loader when loading the system image as
ELF binary. It defines the start of the text segment of the system image in physical
memory. As the physical memory layout differs between SoCs and boards, we must
provide a value that is suitable for the memory layout of the Pine-A64-LTS board. From
looking at Linux’ /proc/iomem, we remember that the system RAM of our board starts at
0x40000000.

As indicated by the error message above, the run tool expects to find the link address
in a file called board/pine_a64lts/image_link_address. Let’s create such a file with a sensible
value. It is common practice to leave some room at the very beginning of the memory,
which is often occupied by the boot loader. It is usually fine to link the system image to
64 KiB after the start of the physical memory.

$ cd allwinner
$ mkdir -p board/pine_a64lts
$ echo 0x40010000 > board/pine_a64lts/image_link_address

With the link address defined, another attempt to build the system image for the
log scenario succeeds. The result can be found in the build directory’s var/run/ sub
directory:

$ find var/run
var/run
var/run/log.boot_modules.o
var/run/log
var/run/log/boot
var/run/log/boot/image.elf
var/run/log.core
var/run/log.bootstrap
var/run/log.config

The most interesting file is certainly var/run/log/boot/image.elf, which is the final sys-
tem image. To quickly validate the link address, let’s check the ELF entrypoint.

$ readelf -a var/run/log/boot/image.elf | grep Entry
Entry point address: 0x40010000

The value looks familiar. While we are at it, the other files are also worth inspecting.

47

2.4 Kernel skeleton

var/run/log.boot_modules.o is an aggregate of all boot modules of the system sce-
nario.

var/run/log.core is an ELF binary of core without the boot modules. The binary con-
tains all debug information. This is handy for debugging the core component. For
example, using this binary, the instruction pointer of a page fault within core can
be related to the matching source code using objdump.

var/run/log.bootstrap is an ELF binary of the bootstrap code without core and the
boot modules. As for the core log.core binary, it is handy for debugging the boot-
strap code.

var/run/log.config is the config boot module passed to the initial init component. It
corresponds to the snippet passed the install_config function as found in the
log.run script.

By the way, one may prefer booting a uImage instead of an ELF image because a uIm-
age is compressed using gzip by default, which reduces the boot time. The run tool
supports that via the argument -include image/uboot. One can either extend the
RUN_OPT variable by adding a corresponding line to etc/build.conf or pass the option
to the make command line:

$ RUN_OPT=’--include image/uboot’ make run/log BOARD=pine_a64lts KERNEL=hw

After completing the build, the uImage file can be found at var/run/log/uImage.
This is not magic. At this point, I recommend taking a look at the run tool’s snippets

located at tool/run/. In particular, tool/run/image/uboot contains the sequence of com-
mands used for generating the uImage from the ELF image.

2.4.3 Getting to grips using meaningful numbers

The faux system image that we just created contains information cowardly copied from
the imx8q_evk board, and which certainly mismatches the pine_a64lts board. So let’s
revisit the files in our repository one by one and look out for any numbers. Numbers
are important. According to my experience, hexadecimal numbers are especially im-
portant. Don’t forget to squinch your eyes when looking at them. Change them with
caution.

48

2.4 Kernel skeleton

$ cd repos/allwinner
$ find -type f
./lib/mk/spec/arm_v8/bootstrap-hw-pine_a64lts.mk
./lib/mk/spec/arm_v8/core-hw-pine_a64lts.mk
./board/pine_a64lts/image_link_address
./src/bootstrap/board/pine_a64lts/platform.cc
./src/bootstrap/board/pine_a64lts/board.h
./src/include/hw/spec/arm_64/pine_a64lts_board.h
./src/core/board/pine_a64lts/board.h

lib/mk/spec/arm_v8/bootstrap-hw-pine_a64lts.mk

The following line catches our attention:

SRC_CC += bootstrap/spec/arm/gicv3.cc

The i.MX8 SoC uses ARM’s Generic Interrupt Controller version 3 (GICv3). From
booting Linux on the Pine-A64 board, we learned that the Allwinner SoC uses the GIC
version 2. Fortunately, the base-hw kernel supports both versions. So we can change
the line to:

SRC_CC += bootstrap/spec/arm/gicv2.cc

The NR_OF_CPUS value can stay unmodified because the Allwinner SoC has 4 cores.

lib/mk/spec/arm_v8/core-hw-pine_a64lts.mk

We merely also have to adjust the GIC version from 3 to 2.

src/bootstrap/board/pine_a64lts/platform.cc

The file contains a lot of i.MX8Q-specific initialization steps like tweaking clocks
and voltages. We can remove this code without looking back. The body of the
Bootstrap::Platform::Board constructor can be reduced to the mere initialization
of the interrupt controller:

{
::Board::Pic pic { };

}

The list of memory regions passed to the core_mmio member can be pruned to the
single entry for the UART. The other entries that refer to the IRQ controller should be re-
moved because they refer to the wrong version of the GIC anyway. We will supplement
the proper regions for the GICv2 later, once we turn our attention to interrupts.

49

2.4 Kernel skeleton

core_mmio(Memory_region { ::Board::UART_BASE, ::Board::UART_SIZE })

At this point, I am admittedly unsure about the wake_up_all_cpus implementation,
in particular whether the opcode of the CPU_ON smc instruction would match. I guess
not. We will come to multi-processor support at a later stage. So let’s better remove the
uncertainty by reducing the implementation to

void Board::Cpu::wake_up_all_cpus(void *) { }

src/bootstrap/board/pine_a64lts/board.h

We see several things that cry for adjustment.

• Updating the include guards

• Including the correct board definitions by replacing

#include <hw/spec/arm_64/imx8q_evk_board.h>

by

#include <hw/spec/arm_64/pine_a64lts_board.h>

• Incorporating the GICv2 driver instead of the GICv3 driver by changing

#include <hw/spec/arm/gicv3.h>

to

#include <hw/spec/arm/gicv2.h>

• Defining the C++ type Pic such that it refers to the Hw::Gicv2 driver:

using Pic = Hw::Gicv2;

src/include/hw/spec/arm_64/pine_a64lts_board.h

To our despair, the file is full of numbers.

• It includes the driver for the UART used for printing debug messages. Of course,
the specified drivers/uart/imx.h driver won’t work. While experimenting with
the bare-metal serial output, we have learned that the Allwinner SoC uses a
NS16550 UART controller. Let us pretend having a driver by changing the line to

50

2.4 Kernel skeleton

#include <drivers/uart/ns16550.h>

• The board-specific name space should reflect the name of our board:

namespace Hw::Pine_a64lts_board {

• We want the C++ type Hw::Serial to refer to our hypothetical NS16550 driver.

using Serial = Genode::Ns16550_uart;

• The RAM_BASE and RAM_SIZE values must match those we found from the
look at Linux /proc/iomem.

RAM_BASE = 0x40000000,
RAM_SIZE = 0x7e000000,

• We already have found known-good values for UART_BASE and UART_SIZE
during our bare-metal serial output experimentation. The UART_CLOCK value
won’t be needed in our case. So we define it as zero.

UART_BASE = 0x1c28000,
UART_SIZE = 0x1000,
UART_CLOCK = 0,

• The IRQ_CONTROLLER_REDIST_BASE and SIZE are not used for the GICv2. So
the values can be removed.

• The values for IRQ_CONTROLLER_DISTR_BASE and SIZE as well as VT_CPU_BASE
and SIZE will become important once we will turn our attention to the interrupt
controller. But this is not today. So we keep the existing numbers, keeping in
mind that they won’t work.

• When using the GICv2, we need to add the definition of IRQ_CONTROLLER_CPU_BASE
and VT_CTRL_BASE. Until we use interrupts, we can pick an arbitrary number.
To display good manners, let’s leave the lowest 12 bits to zero, pretending that
each device resource starts at a page boundary.

IRQ_CONTROLLER_CPU_BASE = 0xaaaaa000,
IRQ_CONTROLLER_VT_CTRL_BASE = 0xbbbbb000,

51

2.4 Kernel skeleton

/src/core/board/pine_a64lts/board.h

The file contains mostly interrupt numbers. We will turn our attention to interrupts
later. Let’s not touch them for now because we cannot validate the values anyway at
this point. Apart from these numbers, a few adjustments must be made.

• Updating the include guard

• Including the board definitions from pine_a64lts_board.h

• Adjusting the GIC version of the included header from gicv3.h to gicv2.h

• Importing the board-specific namespace Hw::Pine_a64lts_board

To wrap up this step, let’s check if we missed any leftover by grepping for remaining
occurrences of patterns like “imx” or “gicv3”.

$ grep -ri imx repos/allwinner

Now would also be a good time to revisit the file headers, updating the information
about the author, creation date, brief description, and copyright. Should the code be
considered to eventually become part of the Genode upstream project at some point, it
is sensible to leave the license disclaimer as is, clarifying that the code is designated be
a part of the Genode OS framework.

UART driver for bootstrap and core The next attempt to build the system image for
the log scenario fails predictably:

$ make run/log KERNEL=hw BOARD=pine_a64lts
...

COMPILE core_region_map.o
In file included from /.../repos/allwinner/src/core/board/pine_a64lts/board.h:17,

from /.../repos/base-hw/src/core/platform.h:37,
from /.../repos/base-hw/src/core/core_region_map.cc:18:

/.../repos/allwinner/src/include/hw/spec/arm_64/pine_a64lts_board.h:17:10:
fatal error: drivers/uart/ns16550.h: No such file or directory

#include <drivers/uart/ns16550.h>
^~~~~~~~~~~~~~~~~~~~~~~~

We can find a number of blueprints for our new UART driver at repos/base/include/-
drivers/uart/. By following the lines of the existing drivers and combining our knowl-
edge from the bare-metal serial experiments, we can come up with the following little
driver placed at allwinner/include/drivers/uart/ns16550.h.

52

2.4 Kernel skeleton

#include <util/mmio.h>

namespace Genode { class Ns16550_uart; }

class Genode::Ns16550_uart : Mmio
{
private:

struct Thr : Register<0x00, 32>
{
struct Data : Bitfield<0,8> { };

};

struct Lsr : Register<0x14, 32>
{
struct Thr_empty : Bitfield<5,1> { };

};

public:

Ns16550_uart(addr_t const base, uint32_t, uint32_t) : Mmio(base) { }

void put_char(char const c)
{
while (read<Lsr::Thr_empty>() == 0);

write<Thr::Data>(c);
}

};

Like all drivers dedicatedly developed for Genode, it uses Genode’s Register API to
safely access bits of memory-mapped I/O registers. You can find the API described in
Section 8.18 “Utilities for user-level device drivers” in the Genode-Foundations book.

Climbing the mountain step by step We are almost there. On our walk, we repeat-
edly try to build the system image, look at the compiler and linker errors, fix them, and
repeat.

53

2.4 Kernel skeleton

$ make run/log KERNEL=hw BOARD=pine_a64lts
...
COMPILE bootstrap/spec/arm/gicv2.o

/.../repos/base-hw/src/bootstrap/spec/arm/gicv2.cc:
In constructor ’Hw::Gicv2::Gicv2()’:

/.../repos/base-hw/src/bootstrap/spec/arm/gicv2.cc:23:28:
error: ’NON_SECURE’ is not a member of ’Board’

bool use_group_1 = Board::NON_SECURE &&
^~~~~~~~~~

The interrupt-controller driver apparently needs to distinguish the cases where the
kernel is running in the so-called “secure world” or “normal world” of ARM Trust-
Zone. If you want to learn more about schizophrenia as a feature of ARM processors,
let me point you to our dedicated article on ARM TrustZone 1. Admittedly, I’m not
completely sure about which of both worlds are executing our kernel. But it is proba-
bly safe to assume that the boot process switches to the normal world before loading
and starting our system image. So we add the definition of NON_SECURE to allwin-
ner/src/bootstrap/board/pine_a64lts/board.h.

namespace Board {
...
static constexpr bool NON_SECURE = true;

}

The next slope on our way up the hill:

$ make run/log KERNEL=hw BOARD=pine_a64lts
...
MERGE bootstrap-hw-pine_a64lts.lib.a

/.../genode-aarch64-ar: bootstrap/board/pine_a64lts/platform.o:
No such file or directory

/.../repos/base/mk/lib.mk:180: recipe for target
’bootstrap-hw-pine_a64lts.lib.a’ failed

We have to guide the build system to consider source files in the allwinner repository,
by adding the following line to lib/mk/spec/arm_v8/bootstrap-hw-pine_a64lts.mk.

vpath bootstrap/% $(REP_DIR)/src

1https://genode.org/documentation/articles/trustzone

54

https://genode.org/documentation/articles/trustzone

2.4 Kernel skeleton

Next try. This time, we get a link error:

/.../aarch64-none-elf/bin/ld: debug/core-hw-pine_a64lts.a(cpu.o):
in function ‘Board::Pic::Pic()’:

/.../repos/base-hw/src/core/spec/arm/virtualization/gicv2.h:22:
undefined reference to ‘Board::Pic::Gich::Gich()’

It turns out that the virtualization-related parts of the GICv2 driver reside in a distinct
compilation unit located at base-hw/src/core/spec/arm/virtualization/gicv2.cc, which is not
yet included in the build description for core. We have to add the following line to
allwinner/lib/mk/spec/arm_v8/core-hw-pine_a64lts.mk.

SRC_CC += spec/arm/virtualization/gicv2.cc

With these minor obstacles addressed, we get a system image that should largely be
compatible with our board. The urge to try out the freshly baked system image on the
board is strong. Why not?

2.4.4 A first life sign of the kernel

Testing the system image on the board comes down to the following few steps.

1. Make sure to build the uImage using the image/uboot RUN_OPT.

$ RUN_OPT=’--include image/uboot’ make run/log BOARD=pine_a64lts KERNEL=hw

2. Copy the uImage from build/arm_v8a/var/run/log/uImage to the TFTP directory. In
my case, that is /var/lib/tftpboot/.

3. Boot the board and use U-Boot’s bootp and bootm commands to load the uImage
via TFTP and start it.

55

2.4 Kernel skeleton

=> bootp 10.0.0.32:/var/lib/tftpboot/uImage
BOOTP broadcast 1
BOOTP broadcast 2
BOOTP broadcast 3
DHCP client bound to address 10.0.0.178 (1121 ms)
Using ethernet@1c30000 device
TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/uImage’.
Load address: 0x42000000
Loading: ###

2.7 MiB/s
done
=> bootm
Booting kernel from Legacy Image at 42000000 ...

Image Name:
Image Type: AArch64 Linux Kernel Image (gzip compressed)
Data Size: 887610 Bytes = 866.8 KiB
Load Address: 40010000
Entry Point: 40010000
Verifying Checksum ... OK
Uncompressing Kernel Image

Starting kernel ...

Error: Assertion failed: id < _count && _cpus[id].constructed()
Error: File: /.../repos/base-hw/src/core/kernel/cpu.cc:205
Error: Function: Kernel::Cpu& Kernel::Cpu_pool::cpu(unsigned int)

The excitement is real! That’s the first life sign of Genode’s kernel! We get three
satisfactory results at once. First, our custom Ns16550_uart driver is working, as ev-
idenced by the beautifully formatted error messages. So we did not mess up any of
the important numbers there. Second, in contrast to the archaic experiments with the
bare-metal serial output, which did not even use a stack, we can now enjoy the comfort
of Genode’s C++ runtime. We don’t feel like living in a cave any longer.

56

2.5 Low-level debugging

2.5 Low-level debugging

Some kids from the city once told me about programs called “debuggers”. They also
use a technology named “green light” to cross the streets. City kids. As we are still far
away from urban territory, we are in need of the rural ways of debugging. What are
our options?

Remember, at the end of the previous section, we were greeted with the first life sign
of the kernel:

Error: Assertion failed: id < _count && _cpus[id].constructed()
Error: File: /.../repos/base-hw/src/core/kernel/cpu.cc:205
Error: Function: Kernel::Cpu& Kernel::Cpu_pool::cpu(unsigned int)

This raises the questions: What is the trouble about? How did we get there? What
went wrong? Thankfully, the message gives us a concrete reference to the code cpu.cc
at line 205.

Cpu & Cpu_pool::cpu(unsigned const id)
{

assert(id < _count && _cpus[id].constructed());
return *_cpus[id];

}

By looking at this code, I’m tempted to draw the connection to the corners we cut
regarding the Board::Cpu::wake_up_all_cpus method, which we deliberately left
empty. But let us leave this speculation for later.

To get hold of the situation, it is useful to know which part of the condition fails.
This can be revealed by adding the following instrumentation at the beginning of the
method.

Genode::log("cpu: id=", id, " _count=", _count, " "
"constructed=", _cpus[id].constructed());

The Genode::log function is declared in the base/log.h header. Note that it relies on
a fair bit of framework infrastructure such as synchronization primitives. In desper-
ate situations during the debugging of lowest-level framework code, the Genode::raw
function can become handy as a drop-in replacement. In contrast to log, the raw func-
tion relies on less infrastructure. In practice, I use log by default and raw as last resort.
After rebuilding the system image and rebooting the board, it turns out that the log
function works well at this point.

57

2.5 Low-level debugging

...
cpu: id=0 _count=4 constructed=0
Error: Assertion failed: id < _count && _cpus[id].constructed()

The instrumentation tells us that the first element of the _cpus array has not been
properly constructed. But how to find out why? We ultimately need to know the call
chain that led to execution of the Cpu_pool::cpu method.

2.5.1 Option 1: Walking the source code

The most obvious approach is studying the source code, and determining the immedi-
ate callers of the method using grep.

repos/base-hw$ grep -r "\<cpu("

Unfortunately, “cpu” is a pretty bad pattern to grep for. It is too generic. However,
we know that the code in question must reside inside repos/base-hw/ and can thereby
restrict the search to only this part of the source tree. Furthermore, by using “
mbox<" (match only the start of a word) and appending "(" to the pattern (as expected
at the caller site), we can narrow down the number of matches to a useful level.

src/test/cpu_quota/main.cc: env.cpu()),
src/test/cpu_quota/main.cc: Cpu_session::Quota quota = env.cpu().quota();
src/core/spec/arm_v8/virtualization/kernel/vm.cc: _vcpu_context(cpu_pool().cpu(cpu))
src/core/spec/arm_v8/virtualization/kernel/vm.cc: affinity(cpu_pool().cpu(cpu));
src/core/spec/arm_v7/virtualization/kernel/vm.cc: _vcpu_context(cpu_pool().cpu(cpu))
src/core/spec/arm_v7/virtualization/kernel/vm.cc: affinity(cpu_pool().cpu(cpu));
src/core/kernel/kernel.cc: Cpu &cpu = cpu_pool().cpu(Cpu::executing_id());
src/core/kernel/cpu_mp.cc: Irq(Board::Pic::IPI, cpu), cpu(cpu)
src/core/kernel/cpu.h: Cpu & cpu(unsigned const id);
src/core/kernel/cpu.h: Cpu & primary_cpu() { return cpu(Cpu::primary_id()); }
src/core/kernel/cpu.h: Cpu & executing_cpu() { return cpu(Cpu::executing_id()); }
src/core/kernel/cpu.h: for (unsigned i = 0; i < _count; i++) func(cpu(i));
src/core/kernel/cpu.cc:Cpu & Cpu_pool::cpu(unsigned const id)
src/core/kernel/cpu_up.cc:Kernel::Cpu::Ipi::Ipi(Kernel::Cpu & cpu) : ...
src/core/kernel/cpu_context.h: void cpu(Cpu &cpu) { _cpu = &cpu; }
src/core/kernel/thread.cc: Cpu & cpu = cpu_pool().cpu(user_arg_2());

From these results, we can immediately disregard the lines referring to src/test/. Also
the virtualization-related matches are most likely not of interest. When inspecting the
remaining lines, the number of potential callers comes down to 5:

58

2.5 Low-level debugging

src/core/kernel/kernel.cc: Cpu &cpu = cpu_pool().cpu(Cpu::executing_id());
src/core/kernel/cpu.h: Cpu & primary_cpu() { return cpu(Cpu::primary_id()); }
src/core/kernel/cpu.h: Cpu & executing_cpu() { return cpu(Cpu::executing_id()); }
src/core/kernel/cpu.h: for (unsigned i = 0; i < _count; i++) func(cpu(i));
src/core/kernel/thread.cc: Cpu & cpu = cpu_pool().cpu(user_arg_2());

With such a low amount of callers, we can apply brute force by adding the following
line just before each call.

Genode::log(__FILE__, ":", __LINE__);

The compiler replaces __FILE__ with a string of the file name of the source code and
__LINE__ with a string of the line number where __LINE__ appears within the source
file. Another useful magic macro is __PRETTY_FUNCTION__, which expands to the name
of the surrounding function.

After rebooting the board with the instrumentations in place, we see the origin of the
call:

/.../repos/base-hw/src/core/kernel/kernel.cc:25

A look at the surrounding code reveals that the function call originates from a func-
tion called kernel:

extern "C" void kernel()
{
...
Cpu &cpu = cpu_pool().cpu(Cpu::executing_id());
...

}

You might guess what’s next?

repos/base-hw$ grep -r "\<kernel(" *

There is only one caller, which is at src/core/kernel/init.cc and brings the kernel_init
function to our attention.

Granted, this step-wise instrumentation may feel a bit like chopping wood with a nail
clipper. But I sometimes enjoy the process anyway. By following call chains in reverse
by browsing and instrumenting the code, one develops some kind of peripheral vision

59

2.5 Low-level debugging

for the code around the call path, which fosters the sense of familiarity with the code
base.

Of course, using grep manually as described above may be too archaic for your taste.
There exist plenty of dedicated tools (like ctags, cscope) and IDEs for aiding source-
code discovery after all. Personally, I prefer simple tools. As a small life hack, I have
put the following snippet in my Vim configuration:

nnoremap <leader>g :execute
\ "grep! -R -I --exclude-dir=.git

\ --exclude=*.orig
\ --exclude=.*.swp
\ --exclude=*.rej
\ --exclude=*~ "
\ . shellescape("\\<" . expand("<cword>") . "\\>")
\ . " ."<cr>:copen<cr><cr>

Similar to how the * and # commands search for the word under the cursor in the
current buffer, the <leader>g command above allows me to grep the word under the
cursor in the source tree and presents the results in a quickfix window. So I can quickly
jump to each occurrence and travel across source files like a poor man’s hypertext sys-
tem.

That all said, once when ending up in a situation with many callers, the approach
of manually instrumenting all caller sites becomes a nuisance, which leads us to the
second option.

2.5.2 Option 2: One step of ground truth at a time

Instead of instrumenting all potential caller sites, we can let the return addresses as
found on the stack guide us by using the following line as instrumentation:

Genode::log("called from ", __builtin_return_address(0));

When executed, this line prints us the return address of the current function scope.
This address corresponds to the caller. By placing this line into the Cpu_pool::cpu
method, we get the following output.

Starting kernel ...

called from 0xffffffc000058720
Error: Assertion failed: id < _count && _cpus[id].constructed()

60

2.5 Low-level debugging

The high number immediately tells us that the executed code resides somewhere
high up in virtual memory. That means, we have already passed the bootstrap stage,
the MMU is enabled, and core/kernel code is executed. As explained in the Section
2.4, the corresponding ELF binary resides at build/arm_v8a/var/run/log.core and can be
inspected via readelf.

build/arm_v8a$ readelf -l var/run/log.core | grep LOAD
LOAD 0x0000000000001000 0xffffffc000000000 0xffffffc000000000
LOAD 0x00000000000c1000 0xffffffc0000c0000 0xffffffc0000c0000
LOAD 0x00000000000ef5c0 0x0000000000000000 0x0000000000000000

The addresses of the ELF segments correlate nicely with the value printed by our
instrumentation. To determine the exact source-code location for the given return ad-
dress, the objdump tool becomes handy. It allows one to disassemble an ELF binary
while displaying the source-code intermixed. The tool is specific to the used CPU ar-
chitecture. That is, for 64-bit ARM, it is called genode-aarch64-objdump. To use it interac-
tively from the shell, the tool chain’s bin/ directory should be added to the shell’s PATH
variable:

$ export PATH=/usr/local/genode/tool/current/bin/:$PATH

With the PATH variable set, we can disassemble the log.core ELF binary and pipe the
result to less for inspection:

build/arm_v8a$ genode-aarch64-objdump -lSd var/run/log.core | less

Note that the amount of output generated by objdump can be huge. By replacing
less by wc -l one can see that the output comprises more than 300,000 lines! Still, this
amount of data leaves less unimpressed, which leaves me impressed. We can simply
search for our address ffffffc000058720 (with the 0x prefix stripped away) via the
slash (/) command and end up at the following section of output:

kernel():
/.../base-hw/src/core/kernel/kernel.cc:25
ffffffc000058718: 12001c21 and w1, w1, #0xff
ffffffc00005871c: 97fff8e3 bl ffffffc000056aa8 <_ZN6Kernel8Cpu
_pool3cpuEj>
ffffffc000058720: aa0003f4 mov x20, x0
/.../base-hw/src/core/kernel/kernel.cc:29

Cpu_job * new_job;

61

2.5 Low-level debugging

The source location kernel.cc line 25 looks familiar.
Alternatively to going though the disassembled output of objdump, the addr2line

utility can be used to streamline the lookup of a source-code location by a given in-
struction address.

$ genode-aarch64-addr2line -e var/run/log.core 0xffffffc000058720
/.../base-hw/src/core/kernel/kernel.cc:25

This is fast and convenient. But sometimes, in particular when code is excessively in-
lined, the contextual information given by the objdump output can be valuable. Most
often, I scroll upwards until hitting the next occurrence of a .cc file and watch silently
the lines - header-file names and fragments of source code - that scroll by. Again, pe-
ripheral vision at play.

2.5.3 Option 3: Backtraces

The __builtin_return_address feature of the compiler allows us to follow the call
chain one step at a time. Each step involves a manual instrumentation, a compile-test
cycle, and the invocation of the addr2line utility.

To avoid such repetitive work, Genode provides the utility function Genode::backtrace()
to walk the stack and print the return addresses along the way. This function is de-
clared in the os/backtrace.h header. An instrumentation of the Cpu_pool::cpu method
would look as follows.

#include <os/backtrace.h>

Cpu & Cpu_pool::cpu(unsigned const id)
{
Genode::backtrace();
...

}

To assist the backtrace() function to parse stack frames correctly, the Genode build
system must be instructed to preserve frame-pointer information. This can be achieved
by placing the following line to the build directory’s etc/tools.conf file. Note that by
default there is no such file. So you will have to create one containing this line.

CC_OPT += -fno-omit-frame-pointer

After rebuilding and running the system image the next time, we are greeted with
quite a lot of output:

62

2.5 Low-level debugging

Starting kernel ...

0xffffffc000058738
0xffffffc00000085c
0xffffffc0000568e0
0xffffffc000056a60
0xffffffc000057e44
0x400273d8
0x40026754
0x40010068
0xffffffc000058738

Each of the values starting with 0xfff... is a valid return address and can be used
with objdump or addr2line as described above. To make matters more convenient,
the addr2line utility can be used in an “interactive” fashion be running the following
command in a separate terminal.

build/arm_v8a$ genode-aarch64-addr2line -e var/run/log.core

With no address specified at the command line, the tool simply waits for standard
input. So we can paste multiple lines of the Genode::backtrace() output directly into
it and get the following result:

0xffffffc000058738
0xffffffc00000085c
0xffffffc0000568e0
0xffffffc000056a60
0xffffffc000057e44
/.../base-hw/src/core/kernel/kernel.cc:25
:?
/.../base-hw/src/core/spec/arm/virtualization/gicv2.h:22
/.../base/include/util/reconstructible.h:56
/.../base-hw/src/core/kernel/init.cc:64 (discriminator 1)

We can spot both of the familiar locations kernel.cc line 25 and init.cc line 64.
As shown above, the standard GNU binutils and compiler features can bring us quite

far without using a debugger. We have gathered a lot of input for investigating the
error. Our next job will be using this information to discharge it.

63

2.6 Excursion to the user land

2.6 Excursion to the user land

Equipped with the rudimentary debugging skills presented in the previous section, it
is time to conquer the remaining stumbling blocks on our way to the user land.

To quickly recall, the starting point of our investigation was the following error mes-
sage.

Error: Assertion failed: id < _count && _cpus[id].constructed()
Error: File: /.../repos/base-hw/src/core/kernel/cpu.cc:205
Error: Function: Kernel::Cpu& Kernel::Cpu_pool::cpu(unsigned int)

By following the call chain leading to this message in reverse, we ultimately ar-
rived at base-hw/src/core/kernel/init.cc at line 64 right in the middle of the function
kernel_init:

pool_ready = cpu_pool().initialize();

To double check that the error indeed occurs somewhere in the initialize method,
let’s wrap the call with a bit of instrumentation.

Genode::log("call cpu_pool().initialize()");
pool_ready = cpu_pool().initialize();
Genode::log("pool_ready=", pool_ready);

The resulting output confirms our hypothesis.

Starting kernel ...

call cpu_pool().initialize()
Error: Assertion failed: id < _count && _cpus[id].constructed()

It is always good to have the reassurance about still being on the right track. As we
suspected, cpu_pool().initialize() is called but never returns. So let’s look at its
implementation in base-hw/src/core/kernel/cpu.cc.

bool Cpu_pool::initialize()
{

unsigned id = Cpu::executing_id();
_cpus[id].construct(id, _global_work_list);
return --_initialized == 0;

}

64

2.6 Excursion to the user land

Each element of the _cpus array is a Constructible<Cpu> object. The Constructible
pattern is used throughout Genode. It allows for the static allocation of dynamically
created objects. The construct method triggers the construction of a Cpu object. We
are ultimately faced with a general question: How to instrument the construction of
C++ objects?

Debugging the construction of C++ objects The lowest-hanging fruit is adding a
message right at the beginning of the constructor’s body:

Cpu::Cpu(unsigned const id, Inter_processor_work_list & global_work_list)
:
... plenty of initializers ...

{
Genode::log(__PRETTY_FUNCTION__);
_arch_init();

}

Upon the next run, we see no such message. So we can conclude that we get stuck
in the middle of the construction of one of the base classes or aggregated members. As
illustrated by the following picture, the body of the constructor is called pretty late in
the process of constructing an object.

65

2.6 Excursion to the user land

class Kernel::Cpu : public Genode::Cpu,

private Irq::Pool,

private Timout

{

...

unsigned const _id;

Board::Pic _pic { };

Cpu_scheduler _scheduler;

...

Cpu(unsigned id, ...)

:

_id(id),

...

{

...

}

...

};

Placing debug messages gets a little bit more cumbersome now. We have to disguise
such messages as object attributes. For example, by placing the following line right at
the start of the class body, we can see whether we get stuck in the construction of one
of the base classes or - later - during the construction of a member.

bool _x1 = (Genode::log(__FILE__, ":", __LINE__), true);

The effect of this instrumentation looks as follows.

66

2.6 Excursion to the user land

class Kernel::Cpu : public Genode::Cpu,

private Irq::Pool,

private Timout

{

...

bool _x1 = (Genode::log(__FILE__, ":", __LINE__), true);

unsigned const _id;

Board::Pic _pic { };

Cpu_scheduler _scheduler;

...

Cpu(unsigned id, ...)

:

_id(id),

...

{

...

}

...

};

The trick is to wrap the log call into an expression that can be used as initialization of
a dummy member. When the construction of the Cpu object reaches the point of the _x1
member, we see the message as a side effect. The member _x1 is never actually used.

On the next run, we see the following:

Starting kernel ...

call Cpu_pool::initialize()
/.../repos/base-hw/src/core/kernel/cpu.h:77
Error: Assertion failed: id < _count && _cpus[id].constructed()

Since we see the message, we know that the problem occurs not in any of the base
classes but during the construction of a subsequent member. To find out which one, we
can spill dummy members in-between the various members, like so:

67

2.6 Excursion to the user land

unsigned const _id;
bool _x2 = (Genode::log(__FILE__, ":", __LINE__), true);
Board::Pic _pic {};
bool _x3 = (Genode::log(__FILE__, ":", __LINE__), true);
Timer _timer;
bool _x4 = (Genode::log(__FILE__, ":", __LINE__), true);
Cpu_scheduler _scheduler;
bool _x5 = (Genode::log(__FILE__, ":", __LINE__), true);
Idle_thread _idle;
bool _x6 = (Genode::log(__FILE__, ":", __LINE__), true);
Ipi _ipi_irq;
bool _x7 = (Genode::log(__FILE__, ":", __LINE__), true);

If this looks unsophisticated, it’s because it is. The next run reveals the following.

call cpu_pool().initialize()
bool Kernel::Cpu_pool::initialize()
/plain/no/genode.git/repos/base-hw/src/core/kernel/cpu.h:78
/plain/no/genode.git/repos/base-hw/src/core/kernel/cpu.h:117
Error: Assertion failed: id < _count && _cpus[id].constructed()

From this message, we can conclude that the construction of the _pic member is the
problem. Does that ring a bell? In the backtrace we obtained in Section 2.5.3, observed
the following line.

/.../base-hw/src/core/spec/arm/virtualization/gicv2.h:22

We could have saved some time by following the output of the backtrace utility more
closely, but we would have missed our little excursion to the C++ constructor instru-
mentation.

By continuing the manual instrumentation work, we end up in the Gicv2 construc-
tor, specifically in the initialization of the _max_irq member. The max_irq function
interacts with memory-mapped registers of the interrupt controller. Recalling that we
have merely provided dummy values of the register addresses, the failure is no longer
a mystery at all.

Let’s revisit the corners that we cut while mirroring the i.MX8 EVK board support:

• We kept the definitions for memory-mapped I/O regions for the IRQ controller’s
CPU_BASE and DISTR_BASE untouched, knowing that the values most certainly
mismatch with the Allwinner SoC.

• We pruned the core_mmio regions to cover only the UART. So even if core had
the right numbers, it could not access the underlying hardware registers.

68

2.6 Excursion to the user land

• We set NR_OF_CPUS to 4 but left Board::Cpu::wake_up_all_cpus empty.

There are quite a few uncertainties. A good way to reduce them is to first take the
multi-core-related issues from the table. From experience, we know that the bring-up
of secondary CPU cores can be a pain. So let us safe this topic for a later step.

By bringing up a single-processor variant of the kernel first, we will certainly
reach the state of a working kernel more quickly. Subsequent user-level develop-
ments like driver-related work can then happen in parallel with the fiddly work on
the kernel’s multi-processor support. Disabling the kernel’s multi-processor sup-
port comes down to changing the NR_OF_CPUS definition from 4 to 1 in the two files
lib/mk/spec/arm_v8/bootstrap-hw-pine_a64lts.mk and lib/mk/spec/arm_v8/core-hw-pine_a64lts.mk.

Making the interrupt controller driver happy The ARM GIC interrupt controller
consists of two parts. Similar to distinction between the I/O APIC and local APIC on
x86 hardware, there exists a so-called distributor and a CPU-local interrupt controller.
The distributor is responsible for routing interrupts to CPU cores whereas the CPU-
local interrupt controller handles the interrupt delivery for an individual CPU. So on
a 4-core SoC, there are one distributor and four CPU-local interrupt controllers. The
memory-mapped registers of all CPU-local interrupt controllers are the same whereas
each CPU can access only its own local controller.

To find out the addresses of both parts for the Allwinner SoC, there are two conve-
nient sources of information. First, the U-Boot boot loader that we built in a Section
2.2.2 comes with a huge database of board specifications in the form of so-called device
tree (dts) files inside the directory u-boot/arch/arm/dts/. By grepping for “pine” we find
many files referring to “sun50i”. By grepping for “gic” in all files named “sun50i”, we
end up at sun50i-a64.dtsi. In there, the following snippet catches our attention:

u-boot/arch/arm/dts$ vim sun50i-a64.dtsi

gic: interrupt-controller@1c81000 {
compatible = "arm,gic-400";
reg = <0x01c81000 0x1000>,

<0x01c82000 0x2000>,
<0x01c84000 0x2000>,
<0x01c86000 0x2000>;

interrupts = <GIC_PPI 9 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_HIGH)>;
interrupt-controller;
#interrupt-cells = <3>;

};

By looking at the numbers, we unfortunately still don’t know which register ranges
refers to the distributor and the CPU local controller. We could consult ARM’s official
documentation.

69

2.6 Excursion to the user land

Alternatively, we find the answer in the Allwinner A64 user manual 1 on page 74. It
states the following:

GIC_DIST: 0x01C80000 + 0x1000
GIC_CPUIF:0x01C80000 + 0x2000

With this knowledge gained, we can change the definitions in our pine_a64lts_board.h
file to the following.

IRQ_CONTROLLER_DISTR_BASE = 0x01c81000,
IRQ_CONTROLLER_DISTR_SIZE = 0x1000,
IRQ_CONTROLLER_CPU_BASE = 0x01c82000,
IRQ_CONTROLLER_CPU_SIZE = 0x2000,

Additionally, those resources must be registered as core’s memory-mapped I/O re-
gions in board/pine_a64lts/platform.cc.

Bootstrap::Platform::Board::Board()
:
early_ram_regions(Memory_region { ::Board::RAM_BASE, ::Board::RAM_SIZE }),
late_ram_regions(Memory_region { }),
core_mmio(Memory_region { ::Board::UART_BASE, ::Board::UART_SIZE },

Memory_region { ::Board::Cpu_mmio::IRQ_CONTROLLER_DISTR_BASE,
::Board::Cpu_mmio::IRQ_CONTROLLER_DISTR_SIZE },

Memory_region { ::Board::Cpu_mmio::IRQ_CONTROLLER_CPU_BASE,
::Board::Cpu_mmio::IRQ_CONTROLLER_CPU_SIZE })

{
::Board::Pic pic {};

}

When building and running the run/log system image the next time, we get filled
with joy:

1https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf

70

https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf

2.6 Excursion to the user land

Starting kernel ...

kernel initialized
ROM modules:
ROM: [000000004012c000,000000004012c156) config
ROM: [0000000040006000,0000000040007000) core_log
ROM: [00000000401eb000,000000004022c260) init
ROM: [0000000040134000,00000000401eacb0) ld.lib.so
ROM: [0000000040004000,0000000040005000) platform_info
ROM: [000000004012d000,00000000401331e8) test-log

Genode 20.11-197-g635985f542 <local changes>
2010 MiB RAM and 64533 caps assigned to init
[init -> test-log] hex range: [0e00,1680)
[init -> test-log] empty hex range: [0abc0000,0abc0000) (empty!)
[init -> test-log] hex range to limit: [f8,ff]
[init -> test-log] invalid hex range: [f8,08) (overflow!)
[init -> test-log] negative hex char: 0xfe
[init -> test-log] positive hex char: 0x02
[init -> test-log] floating point: 1.70
[init -> test-log] multiarg string: "parent -> child.7"
[init -> test-log] String(Hex(3)): 0x3
[init -> test-log] Very long messages:
[init -> test-log -> log] 1...2
[init -> test-log] 3...4
[init -> test-log] 5...6
[init -> test-log]
[init -> test-log] Test done.

We just witnessed the first successful excursion to the user land. The kernel started
the user-level init component, which in turn started the test-log program as child com-
ponent. The output of test program looks just perfect! To truly appreciate what just
happened, consider that the simple system scenario already entails most of Genode’s
fundamental mechanisms:

• Transition between kernel and user land and vice versa

• Multiple protection domains protected by virtual memory

• Synchronous inter-component communication calls (RPC)

• Asynchronous notifications

• Shared memory between components

• The ELF loading of programs

71

2.6 Excursion to the user land

• Handling of the system’s configuration

• Multi-threading and inter-thread synchronization

• Dynamic linking

The simple log-test scenario above is just the beginning. In the next section, we take the
board through the entire test suite of the Genode base framework.

72

2.7 Device access from the user level

2.7 Device access from the user level

Genode’s peripheral device drivers live outside the kernel and have the form of regular
user-level components. This article presents how the device-hardware access works
under these conditions, while taking the general-purpose I/O pins of the Pine-A64-LTS
single-board computer as playground.

In the previous section, we reached a solid base line of functionality for the kernel and
Genode framework on the Pine-A64-LTS board. Now it is time to turn out attention
to the main topic of our SoC porting effort, which is the interaction with peripheral
devices.

As a warm-up, there is no better peripheral than a general-purpose-I/O pin (GPIO)
controller. It is a relatively simple device while enabling us to observe very satisfy-
ing physical effects. Despite the simplicity, we are faced with the two most important
device-driver-related topics, namely accessing device registers and dispatching inter-
rupts.

The investigation starts with the quest of finding a suitable pin at one of the various
connectors present on the board. The board schematics as found in the PINE64 Wiki
1 are our guide. While skimming the 19 pages of the document and glancing at the
headlines above the very technical looking drawings, the so-called Euler connector at
page 12 catches my attention because this name appears besides a prominently visible
34-pin header on the board.

Figure 3

By looking at the schematics, it is easy to guess that the box with the 34 connectors
corresponds to this pin header. The pins have labels, which give us clues about their
designated purposes. E.g., some pins are wired to fixed voltages like 5V or 3.3V or
ground. Some others hint at specific functionality present in the SoC or another com-
ponent on the board, e. g., those prefixed with I2S or UART or EAROUT. Some pins
however, stand out by being named PB2, PB8, PD7 and such. The prefix P presumably

1https://wiki.pine64.org/wiki/PINE_A64-LTS/SOPine

73

https://wiki.pine64.org/wiki/PINE_A64-LTS/SOPine

2.7 Device access from the user level

stands for pin. Other usual signal-labeling schemes as found in schematics documents
contain the pattern “IO” or “GPIO”. Let’s settle on the pin PB2 and see where this leads
us. By searching the document for “PB2”, we can see that the same signal appears at a
box labeled “R18” (on the page for the Pi-2 connector). By searching for the ominous
component “R18”, we quickly learn that this label refers to the Allwinner SoC. So the
pin is directly connected to the SoC. Did we ask for more? To sum up our findings, the
following pins of the Euler connector are of interest to us:

• Pin 8: 5V

• Pin 27: PB2 (wired to the SoC)

• Pin 34: ground

The label PB2 has to have a meaning for the SoC, which is hopefully cleared up in the
SoC’s documentation 1. For SoCs with no public documentation, the most compelling
alternative source for such information are device-tree source (dts) files as usually pro-
vided by the SoC vendors for the Linux kernel and U-Boot. But let us save the device-
tree topic for later. Being lucky that the Allwinner A64 SoC documentation is public,
we can search it for “PB2”, which brings us to Page 377, specifically to the description
of a bit field named “PB2_SELECT” at a so-called “PB Configure Register 0”.

Figure 4

The surrounding Section 3.21 “Port Controller(CPUx-PORT)" gives us the insights we
need. PB2 is apparently one of the 10 input/output pins of Port B of the PIO peripheral,
which presumably stands for Pin I/O. There exist plenty of device registers that are
mirrored for different ports (B, C, D, ...).

2.7.1 Using a GPIO pin for sensing a digital signal

As a first exercise, let’s write a little program at allwinner/src/test/pin_state/main.cc that
accesses the PB Configure Register 0.

1https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf.

74

https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf

2.7 Device access from the user level

#include <base/component.h>
#include <base/log.h>
#include <base/attached_io_mem_dataspace.h>
#include <util/mmio.h>

namespace Test {
using namespace Genode;
struct Main;

}

struct Test::Main
{

Env &_env;

Attached_io_mem_dataspace _pio_ds { _env, 0x1c20800u, 0x400u };

struct Pio : Mmio
{

struct Pb_cfg0 : Register<0x24, 32>
{

struct Pb2_select : Bitfield<8, 3> { };
};

Pio(addr_t base) : Mmio(base)
{

log("PB2_SELECT: ", read<Pb_cfg0::Pb2_select>());
}

};

Pio _pio { (addr_t)_pio_ds.local_addr<void>() };

Main(Env &env) : _env(env) { }
};

void Component::construct(Genode::Env &env)
{

static Test::Main main(env);
}

The following details are worth noting.

• The program comes in the form of a Main object as opposed to a main() func-
tion. To learn more about this structure, please refer to the dedicated article about

75

2.7 Device access from the user level

Genode’s conscious C++ dialect 1

• The Env interface allows the code to interact with the environment of the Gen-
ode component such as allocating memory, or opening a connection to a service
provided by another component.

• The _pio_ds member opens a connection to an IO_MEM service and obtains a
virtual-memory mapping of the specified range of the system bus. The numbers
are taken from the Allwinner A64 manual.

• The Pio struct represents a memory-mapped I/O region, inheriting the Mmio type.
The Mmio constructor takes the base address of the underlying device-register
range as argument. The structs defined in the scope of the Pio struct mirrors the
register structure of the memory-mapped I/O range: There exists a 32-bit wide
register Pb_cfg0 at offset 0x24.

struct Pb_cfg0 : Register<0x24, 32>

The bits 8 to 10 of this register correspond to the bit field Pb2_select.

struct Pb2_select : Bitfield<8, 3> { };

These declarations correspond one-to-one with the register definitions as found
in the SoC user manual.

• In tho Pio constructor, we print the value of the Pb2_select bitfield by using the
Mmio::read method.

log("PB2_SELECT: ", read<Pb_cfg0::Pb2_select>());

Note that the code is completely free of (often bug-prone) bit-masking/shifting
operations.

To build the program, we have to accompany it with a target.mk file as follows.

TARGET := test-pin_state
SRC_CC := main.cc
LIBS += base

Finally, we need to embed the program into a Genode system scenario. The following
run script accomplishes this.

1https://genodians.org/nfeske/2019-01-22-conscious-c++

76

https://genodians.org/nfeske/2019-01-22-conscious-c++

2.7 Device access from the user level

build { core init test/pin_state }

create_boot_directory

install_config {
<config>
<parent-provides>
<service name="LOG"/>
<service name="PD"/>
<service name="CPU"/>
<service name="ROM"/>
<service name="IO_MEM"/>
<service name="IRQ"/>

</parent-provides>

<default caps="100"/>

<start name="test-pin_state">
<resource name="RAM" quantum="1M"/>
<route> <any-service> <parent/> </any-service> </route>

</start>
</config>

}

build_boot_image { core ld.lib.so init test-pin_state }

run_genode_until forever

When executing this run script, we can observe the following output:

kernel initialized
ROM modules:
ROM: [000000004012c000,000000004012c17f) config
ROM: [0000000040006000,0000000040007000) core_log
ROM: [00000000401eb000,000000004022c260) init
ROM: [000000004012d000,00000000401e4bd0) ld.lib.so
ROM: [0000000040004000,0000000040005000) platform_info
ROM: [00000000401e5000,00000000401ea0d0) test-pin_state

Genode 21.02-61-g446df00d0d8
2010 MiB RAM and 64533 caps assigned to init
[init -> test-pin_state] PB2_SELECT: 7

The PB2_SELECT bits have the value 7, which is the default value (I/O disable) ac-
cording to the documentation. You may ask, what’s behind those bits? The number

77

2.7 Device access from the user level

of connectors of a chip is physically limited by the space of the chip’s package and the
practicalities of PCB routing. To make one SoC applicable to a wide variety of products,
SoC vendors implement a feature set much larger than the pin count would allow and
leave the selection of a board-specific subset of those features to the board vendor. So
different boards can use the same SoC but with different functionality exposed. The
ultimate meaning of the physical pins is left to a software configuration. This multi-
plexing of pins to multiple SoC functionalities is often referred to as I/O muxing or pin
muxing. On some SoCs, the I/O mux configuration is presented as a distinct device.
On the Allwinner A64, it is part of the PIO device. For the pin PB2, the SoC provides
the following options.

000: Input
010: UART2_RTS
100: JTAG_DO0
110: PB_EINT2
001: Output
011: Reserved
101: SIM_VPPEN
111: IO Disable <- default

To sample the state of pin 27 of the Euler connector, we have to change the configu-
ration value to 0 (input). Let’s set the configuration value and validate that the change
has the desired effect by changing the body of the Pio struct as follows.

struct Pb_cfg0 : Register<0x24, 32>
{

struct Pb2_select : Bitfield<8, 3>
{

enum { IN = 0 };
};

};

Pio(addr_t base) : Mmio(base)
{

log("PB2_SELECT: ", read<Pb_cfg0::Pb2_select>());

write<Pb_cfg0::Pb2_select>(Pb_cfg0::Pb2_select::IN);

log("PB2_SELECT: ", read<Pb_cfg0::Pb2_select>());
}

Note the enum value definition for IN, which helps us to self-document the code as
opposed to just writing the value 0. The output looks as expected. We read back the
value that we have just written.

78

2.7 Device access from the user level

[init -> test-pin_state] PB2_SELECT: 7
[init -> test-pin_state] PB2_SELECT: 0

With the PB2 pin configured as input, let’s see if we can observe a signal change at
the Euler connector pin 27. The pin state is captured by the so-called PB Data Register
(PB_DATA_REG) at offset 0x34. The register hosts one bit for each pin of the port B. For
the PB2 pin, we have to poll bit 2. Or, to put it in other words:

...
struct Pb_data : Register<0x34, 32>
{

struct Pb2 : Bitfield<2, 1> { };
};

Pio(addr_t base) : Mmio(base)
{

write<Pb_cfg0::Pb2_select>(Pb_cfg0::Pb2_select::IN);

while (true)
log("PB2_STATE: ", read<Pb_data::Pb2>());

}

This gives us the following output:

[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1

The pattern looks interesting, like if the PB2 pin is not quite sure about its state. For
the experiment, let’s try to connect the PB2 pin to ground. That is shorting the pins 27
(PB2) with 34 (GND). As a matter of courtesy, it is good to avoid connecting the pins
directly but instead placing a resistor of a few hundred Ohm between both pins. Should
we have done a mistake along our way and accidentally connect a 5V pin to GND, the
current will flow nicely through our resistor instead of producing a short circuit. So
what happens when connecting both pins?

79

2.7 Device access from the user level

[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
...

That looks clean! What about connecting pin 27 (PB2) to pin 8 (5V)?

[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
...

Isn’t that wonderful?
The following picture summarizes our scenario.

Core / Init
MMIO

GPIO
Input Test

PB_CFG0
...

PB_DATA
...

...

...

PB_PULL0
...

...

...

Device Registers

MUX

UART2_RTS

JTAG_DO0
...

PB2
Pin 27

Pin 34

VCC Pin 8
MUX

Rpull

ground VCC

Euler
Connector

PIO

System Bus

0x1c20800

Virtual
Memory

Genode Board

The pin 27 of the Euler connector goes to the PB2 pin of the SoC. Via the PB_CFG0
register, we configure this pin to be used as general-purpose I/O pin reflected by bit 2
in the PB_DATA register. The register set of the PIO device unit is visible at physical
address 0x1c20800 at the system bus. Thanks to the MMIO service of Genode’s core, our
test component becomes able to access this register range as part of its virtual address
space. So what’s this PB_PULL0 register shown in the picture?

80

2.7 Device access from the user level

This register can be used to prevent the fluctuating state when leaving the PB2 pin
unconnected. Jargon speaks of high impedance, which sounds super educated but means
the same thing. In real-world applications, this floating state is often not wanted. After
all, digital means 0 or 1 but not maybe. Fortunately, the state can easily be avoided by
connecting the PB2 pin via a very high resistor to ground (or 5V). This resistor pulls
the floating potential down to ground (or up to 5V). Since this is such a common need,
the SoC comes readily equipped with pull-down or pull-up resistors. We just need to
enable either option, which can be done via the PB PULL Register 0 (PB_PULL0).

...
struct Pb_pull0 : Register<0x40, 32>
{

enum { PULL_DOWN = 2 };

struct Pb2 : Bitfield<4, 2> { };
};

Pio(addr_t base) : Mmio(base)
{

...
write<Pb_pull0::Pb2>(Pb_pull0::PULL_DOWN);
...

}

With this little change, the output stays at 0 even when leaving the pin 27 (PB2)
disconnected.

2.7.2 Driving an LED via a GPIO pin

Let’s try the reverse, using the PB2 pin as a digital output signal. At this point, it is easy
to connect the dots at the software side.

1. Configure the PB2_SELECT bits of the PB_CFG0 register to operate the pin in
output mode, which is value 1.

2. Write the desired state to the bit 2 of the PB_DATA register.

The following code sets up the PB_CFG0 register and equips the Pio struct with a
toggle_pb2 method that reads the PB2 state from the PB_DATA register and writes
back the inverted state.

81

2.7 Device access from the user level

struct Pio : Mmio
{

struct Pb_cfg0 : Register<0x24, 32>
{

struct Pb2_select : Bitfield<8, 3>
{

enum { OUT = 1 };
};

};

struct Pb_data : Register<0x34, 32>
{

struct Pb2 : Bitfield<2, 1> { };
};

Pio(addr_t base) : Mmio(base)
{

/* configure PB2 pin to output mode */
write<Pb_cfg0::Pb2_select>(Pb_cfg0::Pb2_select::OUT);

}

void toggle_pb2()
{

bool const value = read<Pb_data::Pb2>();

/* write back inverted value */
write<Pb_data::Pb2>(!value);

}
};

To let the test program blink the LED at a visible rate, we need a timer mechanism.
Here, Genode’s Timer::Connection becomes handy. By adding following few lines to
the Main object, the toggle_pb2 method gets called every 250 milliseconds.

82

2.7 Device access from the user level

#include <timer_session/connection.h>
...
struct Main
{

Timer::Connection _timer { _env };

void _handle_timeout(Duration)
{

_pio.toggle_pb2();
}

Timer::Periodic_timeout<Main> _timout_handler {
_timer, *this, &Main::_handle_timeout, Microseconds { 250*1000 } };

};

Until now, the simple test scenario lack a timer service. So we have to extend the run
script a bit.

1. Adding the timer service to the list of components to build.

build { ... timer }

2. Adding a start node to the static system configuration.

<start name="timer">
<resource name="RAM" quantum="1M"/>
<route> <any-service> <parent/> </any-service> </route>
<provides> <service name="Timer"/> </provides>

</start>

3. Routing the timer-session request by the test program to the timer service.

<start name="test-pin_control">
<resource name="RAM" quantum="1M"/>
<route>
<service name="Timer"> <child name="timer"/> </service>
<any-service> <parent/> </any-service>

</route>
</start>

4. Adding the timer executable to the boot image.

build_boot_image { ... timer }

83

2.7 Device access from the user level

At the hardware side, we need to connect an LED in series with a resistor dimensioned
such that the potential difference over the LED will be approximately 2V. When con-
necting a 5V pin over the LED and the resistor to ground, the resistor should hence take
away 3V. Most LEDs draw a current of 20mA. Hence, Ohm’s law (R = U / I) tells us that
the resistor should have a value of 3V / 0.02 A = 15O Ohm. Picking a higher resistor
cannot hurt. It will just reduce the brightness of the LED. Long story short, a resistor of
a few hundred Ohm should be fine.

If any electrical engineer is reading this and finds I’m writing nonsense, please contact me.
To see if the LED is able to light up in principle when connected with the resistor in

series, the pins 8 (5V) and 34 (GND) become handy. The anode contact (the long one)
of the LED must face the 5V side.

Now its time to bring software and hardware together by connecting the LED’s anode
to pin 27 (PB2) and starting the test program. The final setup looks like this. What’s not
captured in the photo is that the LED is indeed blinking.

Figure 5

2.7.3 Responding to device interrupts

Besides sensing and driving digital signals, GPIO pins are often used as an interrupt
source. So some external circuity can trigger a sporadic response by the software.

To explore the interrupt facility, let’s first ignore the ARM GIC interrupt controller
for a moment and just focus on the PIO device. In the PB_CFG0 register, the value 6
configures the pin as operating in PB_EINT2 mode. Whatever the meaning of the E or
the 2, the pattern “INT” hints at what we want.

84

2.7 Device access from the user level

...
struct Pb_cfg0 : Register<0x24, 32>
{

struct Pb2_select : Bitfield<8, 3>
{

enum { EINT2 = 6 };
};

};
...
Pio(addr_t base) : Mmio(base)
{

write<Pb_pull0::Pb2>(Pb_pull0::PULL_DOWN);

write<Pb_cfg0::Pb2_select>(Pb_cfg0::Pb2_select::EINT2);
}

The PB External Interrupt Status Register (PB_EINT_STATUS_REG) reflects the in-
terrupt state.

struct Pb_eint_status : Register<0x214, 32> { };

As an intermediate test, we can poll this register and see what happens when we
connect the pin 27 (PB2) to pin 8 (5V). The polling loop can be directly added to the Pio
constructor.

while (true)
log("PB_EINT_STATUS: ", read<Pb_eint_status>());

After starting the program, we see the following output scrolling by.

[init -> test-pin_interrupt] PB_EINT_STATUS: 0
[init -> test-pin_interrupt] PB_EINT_STATUS: 0
[init -> test-pin_interrupt] PB_EINT_STATUS: 0
...

Once after connecting PB2 to 5V, the output changes to:

[init -> test-pin_interrupt] PB_EINT_STATUS: 4
[init -> test-pin_interrupt] PB_EINT_STATUS: 4
[init -> test-pin_interrupt] PB_EINT_STATUS: 4
...

85

2.7 Device access from the user level

The 4 corresponds to the bit 2 set, which is what we anticipated. The status bit never
returns to the original state. To clear the bit, a 1 must be written to the status bit. This
can be tested by slightly changing the while loop.

while (true) {
if (read<Pb_eint_status::Pb2>()) {

log("PB2 EINT status went high");
write<Pb_eint_status::Pb2>(1);

}
}

The scrolling log output is no more. Now, we see only one message each time we
fiddle with the PB2 pin.

[init -> test-pin_interrupt] PB2 EINT status went high

The clearing of the interrupt status works as advertised.
Until now, we have observed the PIO device behavior via a polling loop, which is

of course not in the spirit of using interrupts. To complete the scenario, we have to
tell the PIO to inform the CPU’s interrupt controller (GIC) whenever the EINT status
goes high. The connection between the PIO and the GIC can be established via the PB
External Interrupt Control Register.

struct Pb_eint_ctl : Register<0x210, 32>
{

struct Pb2 : Bitfield<2, 1> { };
};

When setting bit 2 in this register, the GIC will see a device interrupt from the PIO
device. The GIC interrupt numbers are documented in the Allwinner A64 manual at
page 211. PB_EINT is interrupt number 43.

To obtain an interrupt in our component, we can use core’s IRQ service as follows.

86

2.7 Device access from the user level

#include <irq_session/connection.h>
...

struct Test::Main
{

...

enum { PB_EINT = 43 };

Irq_connection _irq { _env, PB_EINT };

unsigned _count = 0;

void _handle_irq()
{

log("interrupt ", _count++, " occurred");

_pio.clear_pb2_status();

_irq.ack_irq();
}

Signal_handler<Main> _irq_handler { _env.ep(), *this, &Main::_handle_irq };

Main(Env &env) : _env(env)
{

_irq.sigh(_irq_handler);
_handle_irq();

}
};

The following details about this code fragment are worth highlighting.

• The GIC interrupt number is passed as argument to the IRQ connection to core.

• Interrupts are delivered as signals. The _irq_handler is a signal handler that
is registered at the IRQ session via the _irq.sigh method. Each time the signal
occurs, the Main::_handle_irq method is executed.

• The _pio.clear_pb2_status method performs the clearing of the PB2 interrupt
status.

87

2.7 Device access from the user level

struct Pio
{

...
void clear_pb2_status()
{

write<Pb_eint_status::Pb2>(1);
}

};

The _irq.ack_irq call acknowledges the interrupt at the GIC.

• The _handle_irq method is manually called once after registering the signal han-
dler at the IRQ session. This pattern ensures that an initially pending interrupt
that occurred just before the call of _irq.sigh is processed before the component
goes into idle state.

The following illustration summarizes the scenario.

Core / Init
MMIOIRQ

Interrupt
handler

GPIO
Interrupt

Test

PB_CFG0
...

PB_EINT_CFG0

...

...

...

...

Device Registers

PB_EINT_STATUS

PB_EINT_CTL

MUX
PB2Trigger

Logic
PB_EINT2

positive
edge

2

& PIO

System Bus

GIC

43

Genode

Virtual
Memory

The exact conditions for triggering an interrupt can be configured for the pin using
the PB External Interrupt Configure Register 0 (PB_EINT_CFG0). By default, the status
goes to 1 as soon as a rising edge is detected. The other alternatives are falling edge,
level-high (interrupt stays pending as long as the signal is high), level-low, and double
edge (interrupt on any change of the signal).

Only if the bit 2 of the status register (PB_EINT_STATUS) and the bit 2 of the control
register (PB_EINT_CTL) are set, the interrupt controller (GIC) receives an interrupt.
This GIC interrupt (number 43) is propagated via core’s IRQ service to our user-level
component, which implements the interrupt handler.

Thanks to the interrupt mechanism, we can now respond to sporadic hardware
events without active polling. When executing the scenario, we can see that a single

88

2.7 Device access from the user level

message occurs each time when fiddling with the PB2 pin. The system stays completely
idle otherwise.

[init -> test-pin_interrupt] interrupt 0 occurred
[init -> test-pin_interrupt] interrupt 1 occurred
[init -> test-pin_interrupt] interrupt 2 occurred
[init -> test-pin_interrupt] interrupt 3 occurred
[init -> test-pin_interrupt] interrupt 4 occurred

Pointers to the corresponding code The test programs described above can be
found at the Genode-Allwinner Git repository 1. The C++ code described above is
located at src/test/pin_state/, src/test/pin_control/, and src/test/pin_interrupt/. These test
programs are accompanied with matching run scripts located at the run/ directory.

1https://github.com/nfeske/genode-allwinner

89

https://github.com/nfeske/genode-allwinner

2.8 One Platform driver to rule them all

2.8 One Platform driver to rule them all

In the previous section, we exercised direct-device access from user-level components.
In Genode systems beyond such toy scenarios, however, it would be irresponsible to
follow the path of allowing arbitrary drivers to access any device willy-nilly. Our call
for discipline and rigidity is answered by the (rising drum roll) platform driver.

Let’s recap the scenario of the previous article.

Core / Init
MMIOIRQ

PIO Test

ultimate
authority

access to
any device

Our user-level test program created connections to core’s services for accessing
memory-mapped I/O registers and receiving notifications for device interrupts. The
choice of physical register addresses and the GIC interrupt number was up to the
test program. So in principle, our program could access any part of the platform by
just requesting it. Hence, the mere fact that the driver code has the form of a regular
user-level component does not buy us a security gain per se. To benefit from Gen-
ode’s architecture, we need to rigidly limit the reach of each individual driver to the
smallest-possible set of device resources.

Remember, even though we want to use drivers, we distrust them. Consequently,
besides enforcing access control, we generally don’t want to expose system-global in-
formation to such untrusted components, asking questions like: Does a driver even
need to know the physical address of a memory-mapped I/O register? Does it need to
know the GIC interrupt number of the device it is driving? The perhaps surprising an-
swer is that - no! - many drivers can happily do their job without any knowledge about
these technicalities. All a driver needs to know is how to speak to a device of a certain
type, not where a particular instance of a device is located and how it is wired up. This
principled approach leads to a clear-cut separation of driver logic from parametriza-
tion.

2.8.1 Platform driver

To separate the concerns of parametrization and access control from the device drivers,
Genode employs the so-called platform driver as a level of indirection between core’s
services and the individual drivers. The platform driver has a global view over all de-
vice resources and follows a configured policy to partition those resources between its
clients. Each session to the platform service can comprise potentially multiple devices,
depending on the configured policy.

90

2.8 One Platform driver to rule them all

Core / Init
MMIOIRQ

Platform Driver
Platform

PIO Test

ultimate
authority

authority over
all device resources

access to single
PIO device

To integrate the notion the platform driver into our existing scenario of accessing
general-purpose I/O pins via a to-be-developed PIO device driver, it is best to first
sketch a run script that mirrors the picture above. We have to find a suitable name and
location within our source tree for our designated driver component.

The naming of driver components within Genode follows the pattern

<device-or-platform>_<driver-type>_drv

For example, the imx8_fb_drv is a framebuffer (fb) driver for the i.MX8 SoC. In our
case of a PIO driver for the Allwinner A64 SoC, the name a64_pio_drv is a sensible
choice.

Even though there is no strict convention of the directory where a driver is lo-
cated, drivers usually reside in a subdirectory of src/drivers/ that corresponds to the
primary purpose of the driver. E.g., framebuffer drivers are located at src/driver-
s/framebuffer/. Our designated driver drives GPIO pins. So I settled on placing it at
src/driver/pin/a64/ within the genode-allwinner repository 1. With the complicated
naming-things-topics behind us, let’s turn our attention to the run script, appropriately
named a64_pio_drv.run.

1. Building the components including the platform driver along with our new cus-
tom driver.

build { core init drivers/platform drivers/pin/a64 }

2. Creating a boot directory with the configuration of the init component.

1https://github.com/nfeske/genode-allwinner.

91

https://github.com/nfeske/genode-allwinner

2.8 One Platform driver to rule them all

create_boot_directory

install_config {
<config>
<parent-provides>
<service name="LOG"/>
<service name="PD"/>
<service name="CPU"/>
<service name="ROM"/>
<service name="IO_MEM"/>
<service name="IRQ"/>

</parent-provides>

<default caps="100"/>
...

</config>
}

At this time the scenario consists of only two components, namely the platform
driver and our PIO driver. The <start> node for the platform driver is particularly
interesting.

<start name="platform_drv">
<resource name="RAM" quantum="1M"/>
<provides> <service name="Platform"/> </provides>
<route> <any-service> <parent/> </any-service> </route>
<config>
<device name="pio">
<io_mem address="0x1c20800" size="0x400"/>
<irq number="43"/>

</device>
<policy label="a64_pio_drv -> ">
<device name="pio"/>

</policy>
</config>

</start>

The routing rule states that the platform driver is permitted to open arbitrary
sessions to core, including IRQ and IO_MEM. There are no restrictions.

The <provides> declaration states that this component offers a “Platform” ser-
vice.

The <config> node tells the platform driver about the known device resources.
We declare the existence of a single “pio” device that features one memory-

92

2.8 One Platform driver to rule them all

mapped I/O range and the GIC interrupt 43. You may recall those values from
Section 2.7.

The <config> node also tells the platform driver about the access-control policy
applied to clients that connect to the platform service. In the case at hand, we
dictate that a client labeled as “a64_pio_drv → " gets access to the “pio” device.
You may wonder about the trailing → part of the label. The part before the arrow
is hard-wired by the parent of the a64_pio_drv and thereby reflects the identity
of the client in a way that cannot be forged by the client. The part after the arrow
is controlled by the client. The client can use this part to provide hints about the
purpose of the session. So a client that creates multiple sessions to the same server
can express the intention behind those sessions. In our case, this client-controlled
part remains unused.

The <start> node for our designated PIO driver looks as follows.

<start name="a64_pio_drv">
<resource name="RAM" quantum="1M"/>
<route>
<service name="ROM"> <parent/> </service>
<service name="CPU"> <parent/> </service>
<service name="PD"> <parent/> </service>
<service name="LOG"> <parent/> </service>
<service name="Platform"> <child name="platform_drv"/> </service>

</route>
<config/>

</start>

Let me bring the <route> node to your attention. In contrast to the wildcard
rule <any-service> used for the platform driver, the rules for the PIO driver state
explicit permissions. From these rules, we can immediately infer the potential
reach of the component.

The driver is permitted to connect to the platform driver. That’s what we want.
It is also able to use core’s ROM, CPU, PD, and LOG services, which provide the
fundamental ingredients for executing the program.

Most importantly, no other service is reachable. In particular, the direct use of
core’s IRQ and IO_MEM is out of question. The only way to access a device is the
platform driver that imposes its policy.

3. Building the boot image containing the ELF binaries for the components and exe-
cuting the scenario.

93

2.8 One Platform driver to rule them all

build_boot_image { core ld.lib.so init platform_drv a64_pio_drv }

run_genode_until forever

To exercise the interplay between the designated PIO driver with the platform driver, it
is a good idea to transplant the test/pin_state program of the previous section from the
use of core’s services to the use of the platform driver. The following snippet highlights
the important changes.

#include <platform_session/device.h>
...

struct Pio_driver::Main
{

Env &_env;

Platform::Connection _platform { _env };

Platform::Device _device { _platform };

struct Pio : Platform::Device::Mmio
{

struct Pb_cfg0 : Register<0x24, 32>
{

...
};

...

Pio(Platform::Device &device) : Mmio(device)
{

...
}

};
...
Pio _pio { _device };
...

};

• The API for using the platform driver becomes available via

#include <platform_session/device.h>

• A session to the platform service is established by creating an instance of a
Platform::Connection passing the Genode environment as argument.

94

2.8 One Platform driver to rule them all

Platform::Connection _platform { _env };

By passing the _env, we explicitly give our consent that the Platform::Connection
can have global side effects such as the communication with the outside world.

• Access to one particular device of the platform session can be obtained by creating
an instance of a Platform::Device.

Platform::Device _device { _platform };

When called with only the Platform::Connection as argument, the device refers
to the first - and in our case only - device of the platform session. In cases where
multiple devices appear grouped in one platform session, a second argument al-
lows for the selection of the device.

• The memory-mapped registers of the PIO device are represented by a custom Pio
type that inherits the Platform::Device::Mmio type.

struct Pio : Platform::Device::Mmio

The constructor takes a Platform::Device and an optional index as arguments.

Pio _pio { _device };

If no index is provided, it refers to the first <io_mem> resources as declared in
the platform-driver’s configuration.

• Thanks to the inherited Platform::Device::Mmio type, the individual registers
can be accessed in the same way as we did in the previous article.

Note that in contrast to the previous examples, the code is void of physical addresses.
Now, those addresses are the business of the platform driver only.

2.8.2 Session interfaces for accessing pins

We ultimately want to allow multiple programs to interact with different GPIO pins.
So our PIO driver must evolve into a server component that allows clients to interact
with pins. Analogously to how the platform driver safeguards the access to device
resources by different - mutually distrusting - device drivers, the PIO driver’s job will
be the safeguarding of GPIO pins.

Traditionally, Genode features the “Gpio” session interface for this purpose. This
interface allows a client to access an individual pin. Once assigned to a pin, the session
grants the client the full responsibility for the pin. In particular the direction of the I/O
pin is laid into the hands of the client. We later realized that the wiring and thereby the

95

2.8 One Platform driver to rule them all

direction of a pin is ultimately a board-level decision. Wrongly operating an input pin
in output mode can easily result in a short-circuit. Therefore, the client of an individual
pin should better not be burdened with the responsibility to control the pin direction
or pull resistors. To address this concern, it is best to split the roles of GPIO pins into
clear-cut session interfaces. Those roles are:

1. The sensing of the state of a GPIO pin, e. g., detecting whether a button is pressed
or not: operating a pin as an input signal. This role is now covered by the
“Pin_state” session interface with the single RPC function

bool state() const;

By calling this function, the client can request the state of the pin. That’s it.

2. Controlling the signal level of a pin: operating a pin as an output signal. This role
is now addressed by the “Pin_control” session interface that provides an interface
of only one rather unsurprising RPC function

void state(bool);

3. Receiving a notification of a change of the signal level of a GPIO pin: operating
a pin as an interrupt source. This role can be represented by Genode’s existing
IRQ session interface - the same interface as provided by Genode’s core for GIC
interrupts.

In principle, there may exist legitimate use cases for controlling the direction on an I/O pin by a
client, e. g., for implementing a bit-banging driver for a single-wire-bus. However, in practice,
we haven’t observed such use cases with modern SoC’s. Should such a tristate use case pop up,
we may address it by dedicated session type.

At the time of writing, the “Pin_state” and “Pin_control” session interfaces still re-
side local to the genode-allwinner repository. After a period of time-testing, they will
eventually become part of the Genode API, replacing the traditional “Gpio” session
interface.

2.8.3 PIO device driver

The A64 PIO driver implements the three session interfaces outlined above. It resides at
src/drivers/pin/a64 within the genode-allwinner repository. The accompanied README
covers the details about its use and configuration.

Similar to how the platform-driver configuration declares device resources like IRQs
and memory-mapped I/O regions, the PIO driver’s configuration declares pins.

96

2.8 One Platform driver to rule them all

<config>
<out name="led" bank="B" index="2" default="on"/>
<in name="button" bank="H" index="8" pull="up" irq="edges"/>
...

</config>

Here we see the declaration of an output pin named “led” and an input pin “button”.
The bank and index denote the physical location of the pin at the SoC. Further pin
parameters are expressed as attributes. For example, in the absence of a “Pin_control”
client for the “led”, the led is set to state “on” according to the default attribute.

Since the A64 PIO device subsumes GPIO functionality as well as I/O MUX func-
tionality, the driver also offers the selection of pin functions beyond <in> and <out>.

A few technical tidbits and caveats I encountered during its development are worth
sharing:

Device-register interaction

The actual interplay of the driver with the hardware registers is completely cov-
ered by the code found in pio.h 1. Genode’s Mmio framework API makes this code
strikingly simple, almost self-describing. There is no manual bit fiddling to be
found, thanks to the wonderful Register_array.

Code organization

I deliberately split the code into a boring and an interesting part.

The boring part models the SoC-specific terminology as a bunch of corresponding
C++ types. In types.h 2, one can find types for any term we deal with - however
boring it is. Most of these types have a local Value type that is as rigid as pos-
sible. E.g., the Pull type contains an enum with the values DISABLE, UP, and
DOWN as the Value type. The degrees of freedom mirror the information found
in the SoC manual. Each type is equipped with a class function from_xml that
encodes the knowledge of how values of the type relate to XML representation.
Some of the types go as far as deliberately disabling any means to construct in-
stances of the type without using from_xml by deleting the default constructor.
This way, program-global invariants of the type can be enforced at a single place.
The boring code makes up the biggest part of the driver. This is good because
with “boring” I mean simple and easy to assess for correctness.

The interesting part lives in the main.cc 3 file where all the strings are coming
together.

1https://github.com/nfeske/genode-allwinner/blob/master/src/drivers/pin/a64/pio.h
2https://github.com/nfeske/genode-allwinner/blob/master/src/drivers/pin/a64/types.h
3https://github.com/nfeske/genode-allwinner/blob/master/src/drivers/pin/a64/main.cc

97

https://github.com/nfeske/genode-allwinner/blob/master/src/drivers/pin/a64/pio.h
https://github.com/nfeske/genode-allwinner/blob/master/src/drivers/pin/a64/types.h
https://github.com/nfeske/genode-allwinner/blob/master/src/drivers/pin/a64/main.cc

2.8 One Platform driver to rule them all

Stumbling blocks

Quite a bit of time went wasted because of silly mistakes of mine.

Sometimes I went too hastily over the SoC documentation without double check-
ing. In particular, I allowed myself be become misled by a table in the SoC docu-
mentation 1 at page 376 where I wrongly identified patterns that do not exist. In
one part of the table, the symbol n seemingly refers to a zero-indexed value corre-
sponding to GPIO banks in alphabetic order. Some lines below (at the Pn_INT_*)
definitions, the n refers only to a few banks, namely B, G, H. I wrongly assumed
the same linearity of register layouts to apply for both parts of the table. In reality,
n must just be read as a shorthand of “some value”. Note to myself: Double check
my assumptions each time I’m overconfident that I got it.

Because of my prolonged intimacy with pin 2 at bank B, I lost sight of the other
banks, in particular the fact that each bank is wired up with a distinct GIC inter-
rupt. Once I tried to receive interrupts for pin 8 at bank H, I first struggled to get
the interrupt mechanism to work, until I realized that bank H interrupts end up at
GIC IRQ 53, not 43. In fact, the “pio” device in the platform driver configuration
now looks like this:

<device name="pio">
<io_mem address="0x1c20800" size="0x400"/>
<irq number="43"/> <!-- Port B -->
<irq number="49"/> <!-- Port G -->
<irq number="53"/> <!-- Port H -->

</device>

Implementation of dynamic re-configurability

For maintaining the internal data model of the pin-state configuration, the driver
employs Genode’s List_model utility. By using this utility, the creation and up-
dating of such a data model from XML data becomes very simple. It comes down
to providing hook functions for creating, destroying, matching, and updating
model items.

It is worth noting that the driver configuration is not static but it can be dynam-
ically adjusted during runtime. So in principle, we can attain a blinking LED by
the sole means of re-configuring the driver.

2.8.4 Dynamic configuration testing

Wait what!?

1https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf

98

https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf

2.8 One Platform driver to rule them all

If blinking an LED by reconfiguring the PIO driver sounds as irresistible to you as to
me, follow me for a moment.

For test-driving the dynamic configuration handling of components like the A64 PIO
driver, there exists a handy utility component called dynamic_rom, which provides a
ROM service that feeds the client with different version of ROM content over time.
Here is how a <start> node of a dynamic_rom server looks like.

<start name="dynamic_rom">
<resource name="RAM" quantum="1M"/>
<provides> <service name="ROM"/> </provides>
<route>
<service name="Timer"> <child name="timer"/> </service>
<any-service> <parent/> </any-service>

</route>
<config>
<rom name="config">
<inline description="LED off">
<config>
<out name="led" bank="B" index="2" default="off"/>

</config>
</inline>
<sleep milliseconds="1000"/>
<inline description="LED on">
<config>
<out name="led" bank="B" index="2" default="on"/>

</config>
</inline>
<sleep milliseconds="1000"/>

</rom>
</config>

</start>

The <rom> node within its configuration defines a PIO <config>. After 1 second, the
<config> is replaced with a new version where the default attribute of the <out> pin
is toggled. After one more second, the first <config> becomes active again.

The remaining piece of the puzzle is feeding the ROM provided by the dynamic_rom
server as config ROM to the a64_pio_drv driver. This can be achieved by the following
routing rule in the <start> node of the a64_pio_drv component.

99

2.8 One Platform driver to rule them all

<start name="a64_pio_drv">
...
<route>
<service name="ROM" label="config">
<child name="dynamic_rom"/> </service>

...
</route>

</start>

By wiring up the driver configuration to the dynamic_rom we can see the LED hap-
pily blinking even without any “Pio_control” client present.

The dynamic_rom server is handy utility in many testing situations. Besides issuing
time-triggered configuration updates, it can be used to mock system-state changes that
are normally driven by real components or sensory input that is difficult to fabricate
manually.

2.8.5 Cascaded authorities

Similarly to the configuration concept of the platform driver, the pin-declarations of
the PIO driver configuration are followed by a policy part of the configuration that
associates clients with pins.

<config>
...
<policy label_prefix="pin_event ->" pin="button"/>
<policy label_prefix="pin_pulse ->" pin="led"/>

</config>

This configuration assigns the “led” pin to the program “pin_pulse”, and the “but-
ton” to the program “pin_event”. Note that - like the pin declarations - these assign-
ments can be dynamically changed by the means of configuration updates.

The “pin_pulse” component uses the “Pin_control” session to drive the digital signal
of an LED with a pulse-width-modulated pattern. Effectively, the program toggles the
LED 200 times per second while adjusting the relation of the durations of the low and
high signal levels over time. The result is a nice breathing effect.

The “pin_event” component watches the state of a pin using a combination of
an IRQ session and a “Pin_state” session. Each time when the signal changes, an
IRQ is triggered, which prompts the component to obtain the pin state by calling
Pin_state::state.

The component composition of the scenario looks as follows.

100

2.8 One Platform driver to rule them all

Core / Init
MMIOIRQ

Platform Driver
Platform

PIO Driver

Pin
control

IRQ Pin
state

LED
Pulse

Pin
Button

ultimate
authority

authority over
all device resources

authority over
all GPIO pins

authority to observe
GPIO pin 8 at bank H

authority to control
GPIO pin 2 at bank B

The higher up we get, the less influential the components become. Whereas the ker-
nel has ultimate authority over everything, the reach of the pin-pulse component is
limited to the control of the output signal of a single GPIO pin only.

As indicated by the coloring of the components, policy and mechanisms are nicely
separated. The pin-pulse component does not even know which pin it is driving. It
merely contains the logic needed to modulate the PWM pattern on a digital output
signal. At the bottom end of the picture, the core / kernel component does have no
interpretation of physical device addresses or IRQ numbers. It is indifferent regarding
GIC IRQ number 43 and free from policy. The policy is encapsulated in the forms of
the platform and PIO driver components, each respectively applying a policy at a useful
level of abstraction.

2.8.6 Integrated test scenario

The final version of the a64_pio_drv.run script 1 contains the combinations of the various
fragments discussed above. It test-drives the dynamic re-configurability of the PIO
driver along with the “Pin_state”, “Pin_control”, and IRQ session interfaces.

For the test of the GPIO input, I selected pin 8 of bank H. This pin is accessible at
the Euler connector at pin 10 of the Pine-A64-LTS board. The board has a button la-
beled “power” just besides the reset button. Although this “power” button is con-
nected to the AXP803 power management chip, it doesn’t appear to have any effect
when pressed while the board is on. According to the board schematics, the button
happens to be also wired to pin 5 of the smaller 10-pin Euler header. I figured that I

1https://github.com/nfeske/genode-allwinner/blob/master/run/a64_pio_drv.run

101

https://github.com/nfeske/genode-allwinner/blob/master/run/a64_pio_drv.run

2.8 One Platform driver to rule them all

can thereby feed the button state to the GPIO pin H8 be connecting pin 5 of the small
Euler header with pin 10 of the large Euler header. The signal is active-low, which can
be explained by the schematics that shows that the button pulls the PWR_ON signal to
ground when pressed. Long story short, with this wiring in place, the power button
can be observed via GPIO H8. The GPIO pin B2 can be connected to an LED as we did
for the test/pin_control example described in the previous article.

102

2.9 Pruning device trees

2.9 Pruning device trees

We briefly touched the treasure trove called device trees in the previous section. To
leverage the wealth of information for the development and porting of Genode device
drivers, this article introduces a handy new tool set.

As summarized in the previous article, device-tree files as found at Linux source
tree under arch/<arch>/boot/dts/ provide both a structural description of an SoC and
parametrization data for individual device drivers. It goes without saying that this
information is extremely valuable. On the other hand, the encoding of the information
in the form of so-called Devicetree Specification 1 files is not ideal for us.

The authors of DTS files anticipate a monolithic kernel where a global view of the
system is natural. In contrast, Genode fosters a strict separation of drivers from each
other where each driver gets to see only a tiny part of the picture. With a DTS file
of more than 1600 lines (as for the Pine-A64-LTS) board given, it is really hard to see
to see clear lines of responsibilities between drivers. This is where Genode’s tool at
tool/dts/extract comes into play. Just for reference, usage information are provided by
executing the tool without arguments.

Let’s assume we have generated an all-encompassing DTS file flat_pine64lts.dts for
our board via the C preprocessor as described in Section [?].

The tool/dts/extract utility allows us to generate a dot graph from the source, which
can be processed by the Graphviz 2 dot tool to generate a PNG file.

tool/dts$./extract --dot-graph flat_pine64lts.dts > pine64.dot
tool/dts$ dot -Tpng pine64.dot > pine64.png

1https://github.com/devicetree-org/devicetree-specification/
2https://graphviz.org/

103

https://github.com/devicetree-org/devicetree-specification/
https://graphviz.org/

2.9 Pruning device trees

Figure 6: Does this count as generative art?

104

2.9 Pruning device trees

Even though the picture presents only a tiny fraction of the information present in
the DTS file - neither any properties, nor device addresses, nor unlabeled nodes are
shown - it is too overwhelming to be useful.

Let’s say we are interested in the porting of the ethernet driver. In the previous article
we already manually walked the DTS tree and spotted the corresponding node along
the way. With the -labels option, the extract tool provides a convenient way to get an
overview of the nodes present in the tree.

tool/dts$./extract --labels flat_pine64lts.dts
...
uart1 /soc/serial@1c28400
spi0_pins /soc/pinctrl@1c20800/spi0-pins
ve_sram /soc/syscon@1c00000/sram@1d00000/sram-section@0
reg_aldo1 /soc/rsb@1f03400/pmic@3a3/regulators/aldo1
emac /soc/ethernet@1c30000
uart2 /soc/serial@1c28800
lradc /soc/lradc@1c21800
...

Each line presents a label accompanied with the corresponding path of the device
node. Of course, the command is best combined with grep.

tool/dts$./extract --labels flat_pine64lts.dts | grep ether
emac /soc/ethernet@1c30000
mdio /soc/ethernet@1c30000/mdio
ext_rgmii_phy /soc/ethernet@1c30000/mdio/ethernet-phy@1

The emac label should ring a bell from the previous article. To find out about the
interaction of the emac device with the other parts of the device tree, the extract tool
allows us to generate a new DTS tree with only a selection of devices and their depen-
dencies present.

tool/dts$./extract --select emac flat_pine64lts.dts > emac.dts

From the more of 1600 lines of the original DTS file, the result comprises only about
200 lines. This amount of information can be digested without choking.

tool/dts$ wc -l emac.dts
213 emac.dts
tool/dts$./extract --dot-graph emac.dts > emac.dot
tool/dts$ dot -Tpng emac.doc > emac.png

105

2.9 Pruning device trees

With a few final manual tweaks of the layout parameters, one can get a picture as
nice as this.

Figure 7: A sudden moment of clarity.

Finally, we can create a device-tree binary out of the pruned device-tree source.

tool/dts$ dtc -Idts emac.dts > emac.dtb

The device-tree compiler does not complain, which gives us the reassurance that the
tree is in a healthy state after the brutal pruning.

Test-driving Linux with the tuned device tree In order to successfully boot the
Linux kernel, the supplied device tree needs a few mandatory ingredients. First, we
need to supply the information about the timer to be used by the kernel, which is
provided by the /timer node. Furthermore, /chosen node contains the stdout-path
property, which tells the kernel where messages should go. In the device tree for the
Pine-A64-LTS board, it is defined as

stdout-path = "serial0:115200n8";

106

2.9 Pruning device trees

The serial0 part of the string refers to an entry of the /aliases node, which is defines
as follows. Note that it contains an alias referring to our Ethernet device emac.

aliases {
ethernet0 = &emac;
serial0 = &uart0;
serial1 = &uart1;
serial2 = &uart2;
serial3 = &uart3;
serial4 = &uart4;

};

The following command extracts a device tree featuring those mandatory nodes.
Since the emac device is implicitly pulled in by the /alias node, we don’t need to
explicitly specify the -select emac argument.

tool/dts$./extract --select /chosen --select /aliases --select /timer \
flat_pine64lts.dts

The resulting device tree, once compiled into its dtb representation, suffices to boot
the hand-crafted Linux kernel we built in the previous article. It looks as follows.

107

2.9 Pruning device trees

Figure 8: This fine-tuned device tree suffices for using Ethernet with Linux.

The /timer, /chosen, and /aliases nodes are not shown because the graph omits
unlabeled nodes. It still contains a few obviously unneeded parts such as the ones
relates to the simplefb nodes (defined inside the /chosen node) or the uart1 to uart4
nodes (referenced by the /aliases node). To remove those, one may consider cutting
off those dependencies by commenting out those parts in the flat_pine64lts.dts file.

Prospects Even though the primary motivation behind the new tooling is the prun-
ing of device trees to attain driver-specific miniature device trees to be fed to ported
Linux driver code, I already see myself using the graph feature as an aid for under-
standing SoC hardware. As of now, the graph is admittedly just a quick hack. The dot
language allows for generating nicely structured images, e. g., presenting child nodes
contained in parent nodes. It’s also tempting to generate XML configuration data for
Genode’s platform driver from the device-tree information.

108

2.10 Linux device-driver environment (DDE)

2.10 Linux device-driver environment (DDE)

Given the insights gained by driving a device using a tailored bare-bones Linux system
as discussed in the previous sections, we are ready to take the next step, namely trans-
planting Linux driver code into self-sufficient Genode components. Genode’s DDE
approach combines unmodified driver code taken from the Linux kernel with a driver-
specific library that mimics the Linux kernel interface such that the driver code feels
right at home when executed on top of Genode. Upcoming revisions of this document
will discuss the creation of device driver environments for different classes of device
drivers.

At the time of writing, our methodology of crafting DDEs undergoes a fundamental
revision. The traditional DDEs as found in the repos/dde_linux/ part of Genode’s source
tree used to require significant manual labor per driver. For example, for the porting of
a framebuffer driver, we used to estimate an effort of two months. We successfully ap-
plied the approach to port drivers for USB host controllers, HID devices, framebuffers,
Wifi cards, as well as protocol stacks such as the TCP/IP stack. For reference, the doc-
umentation section of https://genode.org provides practical hints for applying the ap-
proach 1. The development costs behind a DDE are arguably cheap compared to the
time needed to create such feature-rich drivers from scratch. But each driver still calls
for a significant investment.

Based on our experience made during a decade of DDE-Linux work, we recently crit-
ically reviewed our methodology and tools and identified ways to dramatically reduce
the effort. Stefan Kalkowski documents the approach at https://genodians.org.

Linux device driver ports - Breaking new ground

http://genodians.org/skalk/2021-04-06-dde-linux-experiments

Linux device driver ports - Generate dummy function definitions

http://genodians.org/skalk/2021-04-06-dde-linux-experiments

New articles will follow as we go.
For the development of new drivers, we will apply the new way. Still, the DDEs

found in at repos/dde_linux/ provides valuable cues.
If you start developing DDE-Linux-based drivers for Genode, please get in touch by

joining Genode’s mailing list. So we can incorporate your feedback into the evolving
documentation and tools and provide you with assistance.

Genode Mailing List

https://genode.org/community/mailing-lists

1https://genode.org/documentation/developer-resources/porting_device_drivers

109

https://genode.org
https://genodians.org
http://genodians.org/skalk/2021-04-06-dde-linux-experiments
http://genodians.org/skalk/2021-04-06-dde-linux-experiments
https://genode.org/community/mailing-lists
https://genode.org/documentation/developer-resources/porting_device_drivers

	Introduction
	Porting Genode to a new SoC
	Preparatory steps
	Licensing considerations
	Selecting a suitable SoC
	Start by taking the known-good path
	Setting up an efficient development workflow

	Getting acquainted with the target platform
	Getting a first impression
	The U-Boot boot loader

	Bare-metal serial output
	Kernel skeleton
	A tour through the code base
	A new home for the board support
	Getting to grips using meaningful numbers
	A first life sign of the kernel

	Low-level debugging
	Option 1: Walking the source code
	Option 2: One step of ground truth at a time
	Option 3: Backtraces

	Excursion to the user land
	Device access from the user level
	Using a GPIO pin for sensing a digital signal
	Driving an LED via a GPIO pin
	Responding to device interrupts

	One Platform driver to rule them all
	Platform driver
	Session interfaces for accessing pins
	PIO device driver
	Dynamic configuration testing
	Cascaded authorities
	Integrated test scenario

	Pruning device trees
	Linux device-driver environment (DDE)

