
Sculpt for The Curious (TC)

Norman Feske

May 31, 2018

Contents

1 Introduction 2

2 Prerequisites 3
2.1 Vim skills required . 3
2.2 Hardware requirements and preparations 3

3 Building the boot image 5

4 Base system 7
4.1 System overview . 7
4.2 Tweaking and inspecting the system . 10

5 Runtime management 13
5.1 Storage device access and preparation . 14
5.2 Making customizations permanent . 15

6 Examples 16

7 Hosting a guest operating system 18

8 Advanced usage 20
8.1 Manual configuration . 20
8.2 Reproducing the system from source . 21
8.3 Updating the USB boot device from within VirtualBox 22

9 Credits 23

1

1 Introduction

Sculpt is a component-based desktop operating system that puts the user in the posi-
tion of full control. It is empowered by the Genode OS Framework, which provides a
comprehensive set of building blocks, out of which custom system scenarios can be cre-
ated. The name Sculpt hints at the underlying idea of crafting, molding, and tweaking
the system interactively. Starting from a fairly minimalistic and generic base system,
this tour through the Sculpt system will cover the following topics:

• A boot image that is a live system, rescue system, and bootstrap system all in one,

• Ways to tweak and introspect the system,

• Formatting a hard disk or USB stick and storing files on the file system,

• Connecting to a wired or wireless network,

• Installing and deploying software, and

• Running a guest operating system inside a virtual machine.

Feedback and contact Your feedback is appreciated!

Join the Genode mailing list for discussion

https://genode.org/community/mailing-lists

Get in touch with the developers at GitHub

https://github.com/genodelabs/genode

Contact Genode Labs for commercial inquiries

https://www.genode-labs.com

A printable PDF version of this document is available at https://genode.org/documentation/
sculpt-tc.pdf.

2

https://genode.org/community/mailing-lists
https://github.com/genodelabs/genode
https://www.genode-labs.com
https://genode.org/documentation/sculpt-tc.pdf
https://genode.org/documentation/sculpt-tc.pdf

2 Prerequisites

Sculpt for The Curious (TC) is the second of four revisions planned for 2018 with a
successively increased ease of use. In constrast to the initial version, it introduces a
graphical user interface for performing fundamental tasks like connecting to a wireless
network.

Sculpt TC expects that you already know your way around Genode’s source tree and
tool chain. Should this not be the case, please consider the “Getting started” section of
the Genode Foundations book that is available as a free download at https://genode.
org.

2.1 Vim skills required

Sculpt TC leverages (a subset of) GNU coreutils, bash, and Vim as the user interface for
sculpting the system. If you are not yet familiar with using Vim, you may take Sculpt
TC as a welcome chance to get your toes wet. To enjoy the experience, you should be
comfortable with the following operations:

• Opening and navigating within a text file (moving the cursor, using / to search),

• Using the insert mode to make modifications,

• Reverting accidental modifications (u undo),

• Saving a modified file (:w),

• Opening a file in a secondary buffer (:e),

• Switching between buffers (:bn for next, :bp for previous),

• Copy and paste (v start selection, V start line selection, y remember selection, p
paste remembered selection),

• Exiting Vim (:x save and exit, :q! discard changes).

2.2 Hardware requirements and preparations

Sculpt TC should be compatible with recent Intel-based PC hardware featuring Intel
graphics, E1000 networking, Intel wireless, and AHCI.

It is tested best on laptops of the Lenovo X and T series (X220, X250, X260, T430,
T460). For experimenting with Sculpt, we recommend getting a refurbished version of
one of these. You may also find the unofficial hardware compatibility list http://usr.
sysret.de/jws/genode/hcl.html helpful for finding Genode-compatible hardware.

Sculpt has been tested with screen resolutions up to 2560 x 1440. Displays with a
higher resolution are not expected to work. The sweet spot is a full-HD display.

Please revisit the BIOS settings of your machine in the following respects:

3

https://genode.org
https://genode.org
http://usr.sysret.de/jws/genode/hcl.html
http://usr.sysret.de/jws/genode/hcl.html

2.2 Hardware requirements and preparations

VT-d enabled Even though Sculpt is able to run without an IOMMU, we advise to
enable this option for the sandboxing of device drivers.

VT-x enabled Hardware-assisted virtualization is needed to run VirtualBox on top of
Sculpt.

Boot from USB enabled Sculpt is usually booted from a USB stick.

UEFI boot enabled Sculpt TC boots via UEFI by default. The boot image is specially
prepared such that it can be started via legacy boot on older machines. However,
booting it via legacy boot on a modern machine is hit or miss.

UEFI secure boot disabled The Sculpt TC boot image is not cryptographically signed.

Optimize for performance when battery powered If the latter is not set, the hard-
ware may behave erratically (e. g., non-working trackpoint when on battery).

4

3 Building the boot image

The following steps assume that you have the Genode tool chain installed on a
GNU/Linux system. For reference, Ubuntu 16.04 is known to work well.

1. Clone Genode’s Git repository:

git clone https://github.com/genodelabs/genode.git
cd genode
git checkout 18.05

2. Download the support for the NOVA microkernel

./tool/depot/download genodelabs/bin/x86_64/base-nova/2018-05-30

The content is downloaded to the public/ directory and extracted to the depot/
directory.

3. Download all ingredients for the Sculpt boot image

./tool/depot/download genodelabs/pkg/x86_64/sculpt/2018-05-31

4. Create a build directory

./tool/create_builddir x86_64

5. Configure the build directory by editing build/x86_64/etc/build.conf. Most im-
portantly, enable the gems source-code repository where the Sculpt scenario re-
sides. In addition, the ports, dde_linux and dde_ipxe repository are needed
as well. Second, change the default configuration of the QEMU_RUN_OPT variable
to image/disk instead of image/iso. This way, the build process will produce a
valid disk image with a GPT partition table instead of a legacy ISO image.

6. Create the Sculpt boot image (defined by the run script at repos/gems/run/s-
culpt.run)

make -C build/x86_64 run/sculpt KERNEL=nova

5

The boot image is created at build/x86_64/var/run/sculpt.img.

7. Write the boot image to a USB stick:

sudo dd if=build/x86_64/var/run/sculpt.img of=/dev/sdx bs=1M conv=fsync

Here, /dev/sdx refers to the device node of your USB stick. To determine it, you
may inspect the output of dmesg after plugging it in.

6

Microkernel / Core

Init

InitInit Init

Drivers Leitzentrale Runtime

static system

Figure 1: System overview

4 Base system

Unless customized, the Sculpt base system resides as a self-contained live operating
system on a USB stick, not installed on disk. This has two advantages. First, it makes
the update of the base system straight-forward and completely risk-free. Simply install
the new version on a second USB stick. Should the new version cause any trouble,
one can fall back to the original one by swapping the USB sticks. Second, it alleviates
the need to install any boot-loader infrastructure on disk. In fact, we will not create a
partition table and use the entire disk as one file system.

Note that Genode is not limited to booting from USB. It also supports the use of partitions.
But for this guide, we keep things as simple as possible.

4.1 System overview

The Sculpt system consists of four parts living on top of the microkernel (Figure 1).

Static system The first - static - part of the system is baked into the boot image. It
contains components that must be shared by the upper - dynamic - parts and defines
the relationships between the upper parts via a static policy that is fixed by the creator
of the boot image.

Besides a low-complexity GUI multiplexer called Nitpicker, the static system contains
two in-memory file systems. The config file system stores configuration data whereas
the report file system stores information reported by components. These file systems

7

4.1 System overview

Nitpicker
GUI Server

Report

Report FS

ROM

Config FS

Global
Policy

LeitzentraleDrivers Runtime

initial config

Figure 2: Detailed look at the static part of the system

are invisible to regular components. Components obtain their configuration data from a
(read-only memory) ROM service, and report their state to a (write-only) report service.

At boot time, the config file system is pre-populated with information from the boot
image. It stays in memory. Hence, after rebooting the system, any changes are gone.

Drivers subsystem The drivers subsystem provides all the basic services needed to
realize an interactive system scenario: a framebuffer service for the graphical output,
an input service to obtain user input, and a block service to access a storage device. All
other drivers like networking or audio drivers are not covered by the drivers subsys-
tem. They will enter the picture at a later stage and will use the platform service and
USB service to access device resources.

As illustrated by Figure 3, some drivers like the framebuffer driver live in a dynam-
ically managed subsystem that depends on runtime discovery of the hardware by the
so-called driver-manager component. Whenever an Intel graphics device is present,
the Intel framebuffer driver is spawned. Otherwise, a generic VESA driver or a driver
for a boot-time-initialized framebuffer is used.

Several components of the drivers subsystem report their state. E.g., when the Intel
framebuffer is used, it reports the list of connectors present. Most importantly, the
driver manager reports the available block devices.

As user input may enter the system in multiple ways - most prominently PS/2
and USB HID - the drivers subsystem contains a so-called input-filter component that

8

4.1 System overview

Microkernel / Core

Drivers

Dynamic
Init

Driver
Manager

USB
DriverPS2

Driver

Platform
Driver

ACPI
Discovery

Framebuffer
Driver

Block
Driver

Input
Filter

platform input usb framebuffer block

configconfig

state
device info

I/O
MEM

I/O
PORT

IRQ

Figure 3: Services provided by the drivers subsystem

merges these event streams and applies transformations like key remappings or mouse
acceleration.

Leitzentrale subsystem The Leitzentrale gives you - the user - full control over the
config file system and the report file system. You are free to inspect and manipulate
the system in any way you wish. The German term Leitzentrale refers to a control
center that requires a certain degree of sophistication from the operator, which would
be you. A typo at the wrong place may render your system temporarily inaccessible,
eventually requiring a reboot. But don’t be afraid. Since all manual changes performed
in the Leitzentrale occur in memory only, you are not at risk of permanently bricking
your machine.

The Leitzentrale can be toggled at any time by pressing F12 and will be enabled
right after boot. It presents itself with a minimalistic GUI for accessing the storage
devices attached to your machine and for configuring your network connectivity. Most
importantly, however, it allows the user to spawn an interactive shell for manual config
and report file systems access. To spawn this command-line interface, click on the “ram”
item from the menu and select “Inspect”.

The inspect window hosts a small Unix runtime called noux (Figure 4) as user inter-
face. Don’t let the presence of a Unix shell mislead you. Sculpt is not a Unix system.
It merely uses Unix subsystems in the form of noux instances as convenient tools for

9

4.2 Tweaking and inspecting the system

Init

Terminal

Noux

VFS

TarFS

I/O
channels

Recompiled Unix program

FreeBSD libc

libc plugin

Noux session
open read write
select ioctrl
stat readdir

Terminal
session

ROM
session

Figure 4: Noux runtime environment for executing Unix tools

managing and editing files. Within the inspect window, you can interact with both the
report and config file systems using familiar commands such as the bash shell, a subset
of coreutils, and Vim.

Besides the interactive shell, the Leitzentrale employs a noux instance that gives you
a quick glance at the most recent log messages. The log is also available at report/log
and can be browsed with Vim in the inspect window.

Noux is not bullet-proof. Should you get stuck, you may re-spawn it at any time by toggling
the “Inspect” button.

4.2 Tweaking and inspecting the system

The Leitzentrale subsystem empowers you to interactively inspect and tweak the run-
ning system. Let’s take a walk next.

Adjusting the user-input handling By default, Sculpt uses the US-English keyboard
layout with a functioning capslock key. You may possibly want to adjust the former
and - as a Vim user - most likely discharge the latter. As mentioned in Section [?],
user input is processed by the input-filter component. You can edit this component’s
configuration via

genode:/> vim /config/input_filter

10

4.2 Tweaking and inspecting the system

Input Filter Input
Input

Output

Merger

Char Generator

Remap

Remap

PS2 USB
HID

GUI server

Figure 5: Filter chain for user-input events

To change the keyboard layout to German, change “en_us.chargen” to “de.chargen”
and save the file. The change becomes effective immediately at saving time.

To remap the capslock key to escape - a key often needed while using Vim - uncom-
ment the corresponding <remap> rule

<key name="KEY_CAPSLOCK" to="KEY_ESC"/>

After saving the file, a Vim user’s life suddenly becomes much more pleasant.
Take the time to review the remaining parts of the input-filter configuration. The

nested configuration nodes define a hierarchy of filters that are applied in the order
from the inside to outside (Figure 5). There are filters for merging events (<merge>),
remapping buttons and keys (<remap>), supplementing symbolic character informa-
tion (<chargen>), pointer acceleration (<accelerate>), and emulating a scroll wheel
by moving the pointer while pressing the middle mouse button (<button-scroll>).

Display settings If you are running the Intel graphics driver, you can inspect the
connected displays and their supported resolutions by taking a look at the report at
/report/drivers/dynamic/intel_fb_drv/connectors. This report is updated whenever a dis-
play is connected or disconnected. You can use this information to enable or disable a
display in the driver’s configuration, which you can find at /config/fb_drv. Please don’t

11

4.2 Tweaking and inspecting the system

forget to correctly specify all attributes including the hz attribute. Otherwise, the driver
will not consider the <connector> setting.

For a quick test, change the attribute height=“768” to force_height=“768” (you
may modify width analogously). When saving the file, the screen real-estate will
forcibly be limited to the specified size. This is helpful during presentations where the
projector has a lower resolution than the laptop’s internal display. By specifying the
beamer’s resolution, both the laptop and the beamer show the same content.

Exploring the drivers and Leitzentrale subsystems You can review the construc-
tion plan of the drivers subsystem by opening the file /config/drivers in Vim. In partic-
ular, it is interesting to follow the <route> rules to see how the various components
are connected. But there is more. The configuration is live. It enables you to recon-
figure individual components on-the-fly. For example, search for the <start> node
of the PS/2 driver and add the attribute verbose_keyboard=“yes” to the embedded
<config> node. By saving the file, the changed configuration becomes effective. Any
key pressed or released on the PS/2 keyboard will result in a log message on the right.
You may revert this change (vim: u) and save the original version of the file.

Note that not all components are dynamically reconfigurable but many modern ones - in
particular the init component and most long-running server components - are.

It is possible to forcibly restart a component by adding a ’version’ attribute to the <start>

node. Whenever the version value is changed, the component is re-spawned.
The component-specific configuration options are documented in the README files accom-

panying the respective components in the source tree.
Analogously to the drivers subsystem, you can find the construction plan for the

Leitzentrale subsystem at /config/leitzentrale. Try out the following tweaks:

• Change the transparency of the two noux instances by modifying the alpha at-
tribute of the fader component.

• Change the font size of the log_terminal component from “10” to “18”.

You may also enjoy tinkering with the configuration of the nitpicker GUI server, which
is located at /config/nitpicker. For example, you may change the background color or the
labeling color of the “default” domain.

12

Microkernel / Core

Init

InitInit Init

Drivers Leitzentrale Runtime

static system

Figure 6

5 Runtime management

So far, we have not lost any words on the third subsystem called “runtime” that ex-
ists besides the drivers and Leitzentrale subsystems. The runtime subsystem has no
predefined purpose but can be filled with life at your wish.

Analogously to the drivers subsystem, the current configuration of the runtime sub-
system is located at /config/runtime. Where the initial Sculpt EA version required the
user to control the runtime configuration manually, Sculpt TC automates these steps
through the interactive Sculpt manager that is hosted in the Leitzentrale subsystem.
You can click on any of those items to reveal possible operations of the selected item.

For the start, it is best to experiment with the “ram” in-memory file system. In the
previous section, we have already launched the inspect window via the “Inspect” but-
ton of the in-memory file system. By additionally selecting the “Use” button, we tell the
Sculpt manager that we intent to use this file system as storage location for the Sculpt
session. This has two immediate effects. First, any files present at config/<version>/ at
the selected file system are copied to the config file system. As the RAM file system
is empty, no files are copied. Second, the so-called depot/ is initialized at the selected
file system. The depot is the designated place for the installation of software packages.
By default, the depot is initialized such that the Sculpt system accepts software pub-
lished by Genode’s core developers. You may inspect the content of /ram/depot using
the inspect window.

The second dialog of the menu presents options for network connectivity. In order to
install any software packages, one needs to select either “Wired” or “Wifi”. In the latter

13

5.1 Storage device access and preparation

case, one is prompted with the selection of an access point and the WPA passphrase (if
needed). Once connected, the network dialog displays the IP address of the machine.

With a file system selected and an Internet connection, it is time to install and run
additional software. The interface for software installation and deployment is the /con-
fig/deploy file. It contains a number of commented-out template snippets for various
subsystems. As a first test, uncomment the <start> entries for the fonts_fs, wm, and
backdrop. When saving the file, the Sculpt manager will automatically kick off the down-
load of the selected packages and its dependencies and thereby populate the depot.
Once the download has completed, the packages are started. Pay special attention to
the <route> definitions. They define how the respective subsystem is connected to
other parts of the system. For example, by default, the backdrop is directly connected
to the nitpicker GUI server of the base system (parent). By changing the route from
<parent/> to <child name=“wm”/> the backdrop subsystem will be connected to
the window manager instead.

5.1 Storage device access and preparation

Whereas the RAM file system is practical for quick tests, it goes without saying that we
want to persistently store data, programs, and configuration information on a storage
device. Sculpt TC supports SATA disks, NVMe devices, and USB-storage devices. The
storage dialog lists all devices detected by the drivers subsystem. A click on a device
reveals possible operations or - if a partition table is present - more details about the
device structure.

Depending on the operation selected by the user, the Sculpt manager will automat-
ically reshape the runtime subsystem to perform the selected operation. For example,
by selecting the “Format device” operation, the Sculpt manager will create a noux in-
stance with the selected block device mounted at /dev/block and e2fsprogs mounted
at /. The noux instance runs mkfs.ext2 as init process. Likewise, an existing EXT2 file
system can be checked by activating the “Check” button, which triggers the execution
of fsck.ext2 for the selected file system.

A particularly interesting option is presented at the last partition of the Sculpt USB
stick. Initially - right after copying Sculpt’s tiny disk image to the USB stick - the par-
tition is only a few MiB in size. However, using the “Expand” operation, the partition
can be extended to the full size of the USB stick, which makes enough room to use the
USB stick as Sculpt file system. This clears the way for sculpting a custom live system
stored entirely on the USB stick.

All file systems supported by Sculpt present an “Inspect” button. By toggling this
button, the selected file system becomes accessible in the inspect window. Note that
more than one file system can be inspected at a time. Each file system will appear as a
directory at the root of the inspect directory tree, named after the corresponding device
and partition number. This way, the inspect window becomes a convenient tool for
copying files between file systems. Under the hood, the Sculpt manager spawns a file-

14

5.2 Making customizations permanent

system component for each inspected file system, which translates the notion of files
and directories to block-device accesses.

5.2 Making customizations permanent

It is possible to make any customization of the config file system permanent by copying
the modified files to a directory named config/<version> on a persistent file system
where <version> corresponds to the Sculpt version number as found in the /VERSION
file. Each time, this file system is selected for “Use”, those files will be automatically
copied to the in-memory config file system. Note that this mechanism works even for
the /config/deploy file, which allows one to restore a once sculpted system composi-
tion directly at boot time.

To streamline the boot procedure into a customized Sculpt system even more, it is
possible to mark one file system as default. At boot time - when the Sculpt manager
discovers the attached storage devices - it automatically selects a file system for use
according to the following order of preference:

1. Partition labeled as “GENODE*" on a USB device,

2. Partition labeled as “GENODE*" on a SATA or NVMe storage device,

3. An entire SATA or NVMe device used as a single EXT2 file system (as devised by
Sculpt EA).

The storage dialog hosts a convenient “Default” button that allows one to toggle a par-
tition label between “GENODE” and “GENODE*". For example, the last partition of
the Sculpt USB stick can be marked as default or non-default using this button.

15

6 Examples

The config/deploy file contains several example subsystems that are installed on demand
when uncommenting the corresponding <start> nodes.

fonts_fs A file-system server that transforms TrueType fonts into glyph images,
which become thereby accessible as virtual files. This provides a hook for cus-
tomizing the font size of any component that uses the font server, and relieves
components from depending on a specific font-rendering library. According to
the <route> information, its configuration is taken from /config/managed/fonts.
The fonts_fs is used by the graphical terminal of the noux subsystem and the
top_view application.

wm A window manager that displays clients in windows that can be arranged with the
mouse.

backdrop A wallpaper that adjusts itself to any screen size.

nano3d A simple software-rendering demo, which can be adjusted at runtime by mod-
ifying its configuration. E.g., by adding a custom config node directly inside the
<start> node, the appearance can be changed on the fly:

<config painter="shaded" shape="cube"/>

noux A noux instance with a graphical terminal, similar to the inspect window of the
leitzentrale. Note the routing of the various file-system sessions.

shared_fs A file-system server that provides the /shared sub directory of the Sculpt file
system as a new file system. A client of this server won’t see any other parts of
the file system.

usb_devices_rom A hook for assigning USB devices to a virtual machine, explained
in Section 8.3.

vm_fs A file-system server that provides the /vm/debian/ sub directory of the Sculpt file
system as a new file system. It is explained in Section 7.

top_view An application that shows the CPU load, similar to top.

2048 A Threes! inspired puzzle game running in a native Libretro runtime.

vbox5-tc-browser A throw-away virtual machine for running Firefox on TinyCore
Linux. It uses VirtualBox as virtual-machine monitor.

seoul-tc-browser The same virtual machine as vbox5-tc-browser but executed in-
side the light-weight Seoul virtual-machine monitor.

16

qt5_textedit Qt5-based text editor that is explicitly granted access to the config file
system. You may change the route to other file-system services. For example, by
specifying <child name=“shared_fs”/> instead of <parent label=“config”/>

you can edit the shared folder of vm subsystem.

17

7 Hosting a guest operating system

The default deploy configuration found at /config/deploy contains all the pieces needed
to host a virtual machine on top of Sculpt. A virtual machine (VM) is a convenient
stop-gap solution for running programs that are not yet available natively on Genode.
It ultimately enables us to use Sculpt as day-to-day OS today.

By convention, we host the content of each VM in a dedicated directory /vm/<guest-
os>/ at the file system. The VM directory contains a virtual disk image(s) as well as the
VM configuration. To install the ingredients for running Debian in the VM, you may
start the download_debian subsystem, which will automatically download the ISO im-
age of the Debian installer and install a reasonable VM configuration. The subsystem
requests a file-system session that points to the target directory. To pass the /vm/debian
directory to the subsystem, the file-system session is routed to the vm_fs component.
Please make sure to uncomment this component along with the download_debian sub-
system.

Please review and adjust the machine.vbox file as needed, in particular you may recon-
sider the amount of RAM by changing the RAMSize attribute. To start the VM, remove
the comments around the following snippets within /config/deploy:

1. “wm” - the window manager that will host a window of the VM,

2. “vm_fs” - the location of the virtual-disk image and VM configuration,

3. “shared_fs” - the location for sharing files between the guest OS and other parts
of the Sculpt system,

4. “usb_devices_rom” - a configuration that contains a list of USB devices passed to
the VM,

5. “vm” - the virtual machine.

After saving the file, VirtualBox should appear, starting the Debian installer.
After the installation is finished and the guest system was rebooted, it is time to

install the guest additions of VirtualBox. To do that, the apt(1) configuration has to be
adjusted. Edit the file

vi /etc/apt/sources.list

and add the line

deb http://ftp.debian.org/debian stretch-backports main contrib non-free

Afterwards update the package cache

18

apt update

and upgrade the packages

apt upgrade

and install the Linux kernel headers

apt install linux-headers-amd64

Just to be sure that the guest additions will use the newest kernel, reboot the guest
system. Next, install all needed packages for the guest additions:

apt install virtualbox-guest-dkms virtualbox-guest-x11

Having the Linux-header package is mandatory as the needed modules will not be
built without it. After the packages are installed and the modules have been built,
certain features like the dynamic mode-setting and shared folders can be used.

The example machine.vbox file already provides a configured shared folder called
shared. By executing

mount -t vboxsf shared /mnt/

it can be mounted and accessed via /mnt.

19

8 Advanced usage

8.1 Manual configuration

Thanks to the Sculpt manager component of the Leitzentrale, many typical work flows
and configuration tweaks are largely automated. For example,

• The management of storage devices,

• The creation of file-system components for used or inspected file systems,

• The selection and configuration of network access,

• Font size selection depending on the screen resolution,

• Triggering the download of missing depot content on demand.

This convenience comes at the price of built-in policy, which may stand in the way of
sophisticated scenarios. For this reason, almost all policies of the Sculpt manager can
be manually overriden by manually managing configuration files.

The Sculpt manager interacts with the rest of the system solely by monitoring reports
aggregated in the report file system, and writing configuration files into the config file
systems. All files generated by the Sculpt manager are located at /config/managed/. By
manually creating a same-named file at /config/, one can supply a custom managed con-
figuration to the Sculpt manager. A useful practice is taking a snapshot of the generated
configuration as a starting point for the custom version. For example, by copying the
NIC router configuration while it is connected to a network:

cp /config/managed/nic_router /config

Now, the copy at /config/nic_router can be edited. Note that changes usually take
immediate effect.

Examples of manual customization are:

• Adding custom NIC router policies such as port-forwarding rules,

• Installing depot content manually by managing /config/installation by hand. This
includes the ability to download the source code for any package.

• Disarming the automated update mechanism by using a /config/installation file
with no <archive> entries.

• Fixing the current state of the runtime subsystem by copying /config/managed/run-
time to /config/runtime. This allows one to manually tweak and inspect the runtime
in any way, e. g., to enable additional reporting when troubleshooting.

20

8.2 Reproducing the system from source

• Manually defining the default font sizes by creating a custom config/fonts config-
uration.

• Managing Wifi credentials manually by supplying a custom config/wlan file.

To revert any manual customization, delete the corresponding file. In this case, the
Sculpt manager will take over again. Note that all manual customizations can be made
permanent by following the steps explained in Section 5.2.

8.2 Reproducing the system from source

Section 3 presents the creation of the boot image from pre-built packages. You may
want to build those packages from source, in particular for customizing the system.

Before building the packages, various ports of 3rd-party software need to be pre-
pared. The following command prepares all of them at once:

<genode-dir>/tool/ports/prepare_port \
bash coreutils curl dde_ipxe dde_linux \
dde_rump e2fsprogs gnupg grub2 jitterentropy \
libarchive libc libgcrypt libiconv libssh \
lwip_legacy ncurses nova openssl qemu-usb \
stdcxx vim virtualbox5 x86emu xz zlib libpng \
ttf-bitstream-vera stb

The ingredients of the boot image are subsumed by the pkg/sculpt package. The de-
fault set of software installed by the update runtime is defined by the pkg/sculpt-installation
package. You can find the depot recipes for these packages at repos/gems/recipes/pkg/.

The repos/gems/run/sculpt.run script can be executed to build a boot image. By default,
the boot image refers to genodelabs/pkg/sculpt and to genodelabs/pkg/sculpt-installation
for the runtime-installed software. You may want to install your version of these pack-
ages instead by changing the package provider from genodelabs to <you> by adding
the line

RUN_OPT += --depot-user <you>

to your <build-dir>/etc/build.conf.
To build the packages for the boot image:

<genode-dir>/tool/depot/create \
UPDATE_VERSIONS=1 FORCE=1 REBUILD= \
<you>/pkg/x86_64/sculpt \
<you>/bin/x86_64/base-nova

21

8.3 Updating the USB boot device from within VirtualBox

The FORCE=1 argument ensures that source archives are re-created and checked for
the consistency with their versions. If the source code of any of the archives changed,
the UPDATE_VERSIONS=1 argument automatically updates its version. Please don’t for-
get to commit the updated hash files. The empty REBUILD= argument limits the cre-
ation of binary packages to those that do not yet exist in binary form. If not specified,
the command would recompile all packages each time. You may further add -j<N> to
parallelize the build process where <N> is the level of parallelism.

Building the sculpt-installation package works analogously to the sculpt pack-
age.

<genode-dir>/tool/depot/create \
UPDATE_VERSIONS=1 FORCE=1 REBUILD= \
<you>/pkg/x86_64/sculpt-installation

To make the sculpt-installation available for download from within the boot
image, you must publish it. This involves the archiving, signing, and uploading of the
content. The former two steps are covered by the tool/depot/publish tool, which expects
one to specify a concrete version. The current version of the sculpt-installation can
be obtained via

cat <genode-dir>/repos/gems/recipes/pkg/sculpt-installation/hash

The first part is the version. The second part is the content hash of the version.
For more information about working with the depot tool, refer to http://genode.org/
documentation/developer-resources/package_management.

8.3 Updating the USB boot device from within VirtualBox

The /config/deploy example is prepared to assign USB storage devices directly to a run-
ning virtual machine. You may inspect the report /report/drivers/usb_active_config to get
a list of attached USB devices. Use Vim to copy the <policy> node of the selected
device into the <inline> section of the usb_devices_rom start node within your /con-
fig/deploy/config, and adjust the line as follows:

• Replace the node type <policy> by <device>, and

• Rename the attribute label_suffix to label.

The updated usb_devices ROM prompts VirtualBox to open a USB session at the
drivers subsystem. Hence, when saving the modified /config/deploy file, the guest OS
should detect a new USB device (check the output of dmesg). You may now write a
new version of the Sculpt ISO image to the device by following the steps described in
Section 3.

22

http://genode.org/documentation/developer-resources/package_management
http://genode.org/documentation/developer-resources/package_management

9 Credits

Sculpt is an example system scenario of the Genode project, which is an operating-
system technology designed and developed from scratch.

Genode OS Framework https://genode.org

That said, Genode is not developed in a vacuum. It rather stands on the shoulders of
giants and greatly benefits from the free-software/open-source community. The fol-
lowing projects play a particularly important role for the Sculpt scenario.

NOVA microhypervisor

Sculpt’s kernel is a derivate of NOVA, maintained by Genode Labs. NOVA was
originally created by Udo Steinberg http://hypervisor.org.

Linux kernel https://kernel.org

Sculpt reuses several Linux subsystems as individual components, in particular
the USB stack, the Intel wireless stack, the Intel graphics driver, and the TCP/IP
stack.

NetBSD’s rump kernel https://wiki.netbsd.org/rumpkernel/

The file-system support is based on NetBSD kernel code, which became reusable
on Genode thanks to the rump kernel project.

FreeBSD https://www.freebsd.org/

The C runtime that is used by most 3rd-part software is based on FreeBSD’s libc.

Device drivers

WPA supplicant https://w1.fi/wpa_supplicant/ (used by the wireless driver)

iPXE http://ipxe.org (basis of the wired network driver)

xf86emu http://xorg.freedesktop.org/ (used by the VESA driver)

Programs and libraries used within the noux runtime

Vim http://www.vim.org

ncurses https://www.gnu.org/software/ncurses/ncurses.html

GNU coreutils https://www.gnu.org/software/coreutils/coreutils.html

GNU bash https://www.gnu.org/software/bash/

E2fsprogs http://e2fsprogs.sourceforge.net/

23

https://genode.org
http://hypervisor.org
https://kernel.org
https://wiki.netbsd.org/rumpkernel/
https://www.freebsd.org/
https://w1.fi/wpa_supplicant/
http://ipxe.org
http://xorg.freedesktop.org/
http://www.vim.org
https://www.gnu.org/software/ncurses/ncurses.html
https://www.gnu.org/software/coreutils/coreutils.html
https://www.gnu.org/software/bash/
http://e2fsprogs.sourceforge.net/

Libraries used for the package-management infrastructure

curl https://curl.haxx.se (basis of the fetchurl tool)

libssh https://www.libssh.org

OpenSSL https://www.openssl.org

XZ Utils https://tukaani.org/xz/ (support for tar.xz archives)

libarchive https://www.libarchive.org (basis of the extract tool)

zlib https://www.zlib.net

GnuPG https://www.gnupg.org (basis of the verify tool)

Applications

VirtualBox https://www.virtualbox.org (used for hosting virtual machines)

Crucial tools used during development

GNU/Linux (various distributions)

Git https://git-scm.com

GNU compiler collection https://gcc.gnu.org

GNU binutils https://www.gnu.org/software/binutils/

GNU make https://www.gnu.org/software/make/

Tcl https://www.tcl.tk

Expect http://expect.sourceforge.net

Qemu https://www.qemu.org

GitHub issues https://github.com

24

https://curl.haxx.se
https://www.libssh.org
https://www.openssl.org
https://tukaani.org/xz/
https://www.libarchive.org
https://www.zlib.net
https://www.gnupg.org
https://www.virtualbox.org
https://git-scm.com
https://gcc.gnu.org
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/make/
https://www.tcl.tk
http://expect.sourceforge.net
https://www.qemu.org
https://github.com

	Introduction
	Prerequisites
	Vim skills required
	Hardware requirements and preparations

	Building the boot image
	Base system
	System overview
	Tweaking and inspecting the system

	Runtime management
	Storage device access and preparation
	Making customizations permanent

	Examples
	Hosting a guest operating system
	Advanced usage
	Manual configuration
	Reproducing the system from source
	Updating the USB boot device from within VirtualBox

	Credits

